Masja Leendertse
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masja Leendertse.
PLOS Medicine | 2007
W. Joost Wiersinga; Catharina W. Wieland; Mark C. Dessing; Narisara Chantratita; Allen C. Cheng; Direk Limmathurotsakul; Wirongrong Chierakul; Masja Leendertse; Sandrine Florquin; Alex F. de Vos; Nicholas J. White; Arjen M. Dondorp; Nicholas P. J. Day; Sharon J. Peacock; Tom van der Poll
Background Toll-like receptors (TLRs) are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria, while TLR4 is regarded as the gram-negative TLR. Melioidosis is a severe infection caused by the gram-negative bacterium, Burkholderia pseudomallei, that is endemic in Southeast Asia. We aimed to characterize the expression and function of TLRs in septic melioidosis. Methods and Findings Patient studies: 34 patients with melioidosis demonstrated increased expression of CD14, TLR1, TLR2, and TLR4 on the cell surfaces of monocytes and granulocytes, and increased CD14, TLR1, TLR2, TLR4, LY96 (also known as MD-2), TLR5, and TLR10 mRNA levels in purified monocytes and granulocytes when compared with healthy controls. In vitro experiments: Whole-blood and alveolar macrophages obtained from TLR2 and TLR4 knockout (KO) mice were less responsive to B. pseudomallei in vitro, whereas in the reverse experiment, transfection of HEK293 cells with either TLR2 or TLR4 rendered these cells responsive to this bacterium. In addition, the lipopolysaccharide (LPS) of B. pseudomallei signals through TLR2 and not through TLR4. Mouse studies: Surprisingly, TLR4 KO mice were indistinguishable from wild-type mice with respect to bacterial outgrowth and survival in experimentally induced melioidosis. In contrast, TLR2 KO mice displayed a markedly improved host defenses as reflected by a strong survival advantage together with decreased bacterial loads, reduced lung inflammation, and less distant-organ injury. Conclusions Patients with melioidosis displayed an up-regulation of multiple TLRs in peripheral blood monocytes and granulocytes. Although both TLR2 and TLR4 contribute to cellular responsiveness to B. pseudomallei in vitro, TLR2 detects the LPS of B. pseudomallei, and only TLR2 impacts on the immune response of the intact host in vivo. Inhibition of TLR2 may be a novel treatment strategy in melioidosis.
Journal of Immunology | 2008
Masja Leendertse; Rob J. L. Willems; Ida A. J. Giebelen; Petra S. van den Pangaart; W. Joost Wiersinga; Alex F. de Vos; Sandrine Florquin; Marc J. M. Bonten; Tom van der Poll
The incidence of infections with Enterococcus faecium is increasing worldwide. TLRs have been implicated in the recognition of pathogens and the initiation of an adequate innate immune response. We here sought to determine the roles of MyD88, the common adaptor protein involved in TLR signaling, TLR2, TLR4, and CD14 in host defense against E. faecium peritonitis. MyD88 knockout (KO) mice demonstrated an impaired early response to E. faecium peritonitis, as reflected by higher bacterial loads in peritoneal fluid and liver accompanied by a markedly attenuated neutrophil influx into the abdominal cavity. In vitro, not only MyD88 KO macrophages but also TLR2 KO and CD14 KO macrophages displayed a reduced responsiveness to E. faecium. In accordance, transfection of TLR2 rendered human embryonic kidney 293 cells responsive to E. faecium, which was enhanced by cotransfection of CD14. TLR2 KO mice showed higher bacterial loads in peritoneal fluid after in vivo infection with E. faecium and a diminished influx of neutrophils, whereas CD14 KO mice had an unaltered host response. E. faecium phagocytosis and killing were not affected by MyD88, TLR2, or CD14 deficiency. TLR4 did not play a role in the immune response to E. faecium in vitro or in vivo. These data suggest that MyD88 contributes to the effective clearance of E. faecium during peritonitis at least in part via TLR2 and by facilitating neutrophil recruitment to the site of the infection.
The Journal of Infectious Diseases | 2013
Xinglin Zhang; Janetta Top; Mark de Been; Damien Bierschenk; Malbert R. C. Rogers; Masja Leendertse; Marc J. M. Bonten; Tom van der Poll; Rob J. L. Willems; Willem van Schaik
Intestinal colonization by antibiotic-resistant Enterococcus faecium is the first step in a process that can lead to infections in hospitalized patients. By comparative genome analysis and subsequent polymerase chain reaction screening, we identified a locus that encodes a putative phosphotransferase system (PTS). The PTS locus was widespread in isolates from hospital outbreaks of infection (84.2%) and nonoutbreak clinical infections (66.0%) but absent from human commensal isolates. Deletion of pstD, which is predicted to encode the enzyme IID subunit of this PTS, significantly impaired the ability of E. faecium to colonize the murine intestinal tract during antibiotic treatment. This is the first description of a determinant that contributes to intestinal colonization in clinical E. faecium strains.
Infection and Immunity | 2009
Masja Leendertse; Rob J. L. Willems; Ida A. J. Giebelen; Joris J. T. H. Roelofs; Marc J. M. Bonten; Tom van der Poll
ABSTRACT A progressive increase in infections with multiresistant Enterococcus faecium has been reported, especially in cancer patients and neutropenic patients. Despite its increasing importance as a nosocomial pathogen, knowledge of the pathogenesis of E. faecium infections is highly limited. In this study, we investigated the role of neutrophils during peritonitis with subsequent bacteremia caused by E. faecium. Therefore, we depleted neutrophils by intraperitoneal injections of monoclonal antibody RB6-8C5. Mice were followed for 5 days, and the enterococcal outgrowth and inflammatory response were compared between neutropenic mice and immunoglobulin G-injected control mice. Neutropenic mice demonstrated a severe delay in enterococcal clearance from all cultured organs (peritoneal fluid, blood, and lung and liver tissue). In particular, neutropenic mice remained bacteremic for up to 3 days, whereas all nonneutropenic mice had cleared the bacteria from circulation by 2 days. Furthermore, neutropenic mice displayed elevated peritoneal cytokine and chemokine levels 1 day after the infection and attracted fewer macrophages into the peritoneal cavity. In the circulation, a prolonged elevation of tumor necrosis factor alpha, interleukin-6, and the acute-phase proteins serum amyloid A and complement 3 were measured in neutropenic mice. In conclusion, attraction of neutrophils to the primary site of E. faecium infection is important for a rapid clearance of this bacterium, thereby attenuating a systemic inflammatory response.
The Journal of Infectious Diseases | 2009
Masja Leendertse; Esther Heikens; Lucas M. Wijnands; Miranda van Luit-Asbroek; Gwendoline J. D. Teske; Joris J. T. H. Roelofs; Marc J. M. Bonten; Tom van der Poll; Rob J. L. Willems
The role that the enterococcal surface protein Esp plays in the capacity of Enterococcus faecium to adhere to uroepithelial cells and the role that it plays in urinary tract infection and peritonitis was investigated in vitro and in vivo, respectively, using Esp-expressing E. faecium (E1162) and its isogenic Esp-deficient mutant (E1162 Delta esp). Esp expression enhanced in vitro binding to bladder and kidney epithelial cells. In mice, higher numbers of E1162 were cultured from kidneys and bladders after the induction of urinary tract infection, compared with E1162 Delta esp numbers. This was accompanied by a higher frequency of bacteremia, higher cytokine levels in kidney tissue, and renal insufficiency. Esp had no effect on the course of E. faecium peritonitis.
BMC Microbiology | 2009
Esther Heikens; Masja Leendertse; Lucas M. Wijnands; Miranda van Luit-Asbroek; Marc J. M. Bonten; Tom van der Poll; Rob J. L. Willems
BackgroundEnterococcus faecium has globally emerged as a cause of hospital-acquired infections with high colonization rates in hospitalized patients. The enterococcal surface protein Esp, identified as a potential virulence factor, is specifically linked to nosocomial clonal lineages that are genetically distinct from indigenous E. faecium strains. To investigate whether Esp facilitates bacterial adherence and intestinal colonization of E. faecium, we used human colorectal adenocarcinoma cells (Caco-2 cells) and an experimental colonization model in mice.ResultsNo differences in adherence to Caco-2 cells were found between an Esp expressing strain of E. faecium (E1162) and its isogenic Esp-deficient mutant (E1162Δesp). Mice, kept under ceftriaxone treatment, were inoculated orally with either E1162, E1162Δesp or both strains simultaneously. Both E1162 and E1162Δesp were able to colonize the murine intestines with high and comparable numbers. No differences were found in the contents of cecum and colon. Both E1162 and E1162Δesp were able to translocate to the mesenteric lymph nodes.ConclusionThese results suggest that Esp is not essential for Caco-2 cell adherence and intestinal colonization or translocation of E. faecium in mice.
The Journal of Infectious Diseases | 2008
W. Joost Wiersinga; Alex F. de Vos; Catharina W. Wieland; Masja Leendertse; Joris J. T. H. Roelofs; Tom van der Poll
BACKGROUND CD14 is a pattern-recognition receptor that can facilitate the presentation of bacterial components to either Toll-like receptor 2 (TLR2) or TLR4. We have recently shown that during melioidosis, a severe infection caused by the gram-negative bacterium Burkholderia pseudomallei, TLR2 but not TLR4 impacts the immune response of the intact host in vivo. METHODS The function of CD14 in melioidosis was analyzed by means of in vitro and in vivo approaches, using wild-type (WT) and CD14 knockout (KO) mice. RESULTS CD14-deficient macrophages and whole blood leukocytes released less tumor necrosis factor (TNF)-alpha on stimulation with B. pseudomallei or B. pseudomallei lipopolysaccharide in vitro, compared with WT cells. Strikingly, CD14 KO mice intranasally inoculated with B. pseudomallei demonstrated reduced lethality and significantly decreased bacterial outgrowth, compared with WT mice. Administration of recombinant soluble CD14 to CD14 KO mice partially reversed their phenotype to that of WT mice. Lastly, CD14 deficiency did not alter the capacity of macrophages or neutrophils to phagocytose or kill B. pseudomallei. CONCLUSION CD14 is crucially involved in the recognition of B. pseudomallei by innate immune cells but plays a remarkable detrimental role in the host response against B. pseudomallei. Inhibition of CD14 may be a novel treatment strategy in melioidosis.
American Journal of Respiratory and Critical Care Medicine | 2011
Jacobien J. Hoogerwerf; Masja Leendertse; Catharina W. Wieland; Alex F. de Vos; J. Daan de Boer; Sandrine Florquin; Tom van der Poll
RATIONALE After surviving the initial hyperinflammatory phase, patients with sepsis display features consistent with immunosuppression, which renders the host susceptible to nosocomial infections, in particular bacterial pneumonia. Suppression of tumorigenicity 2 (ST2) is a negative regulator of Toll-like receptor signaling implicated in endotoxin tolerance. OBJECTIVES The present study sought to determine the role of ST2 in modulating host defense in the lung during sepsis, using a murine model of cecal ligation and puncture (CLP)-induced sepsis followed by a secondary infection with Pseudomonas aeruginosa via the airways. METHODS CLP or sham surgery was performed on BALB/c wild-type (WT) and ST2 knockout (KO) mice, and 24 hours later animals were challenged with 10(8) live P. aeruginosa. MEASUREMENTS AND MAIN RESULTS CLP mice demonstrated impaired clearance of Pseudomonas from their lungs and reduced pulmonary levels of tumor necrosis factor-α and IL-6 compared with sham mice. After CLP, ST2KO mice with secondary pneumonia displayed a strongly improved survival and a better bacterial clearance compared with WT mice, which was accompanied by enhanced lung inflammation. CLP did not influence the responsiveness of alveolar macrophages toward P. aeruginosa ex vivo irrespective of the st2 genotype. In contrast, CLP resulted in a reduced capacity of WT CD4(+) and CD8(+) T cells to produce IFN-γ and tumor necrosis factor-α, an immune suppressive effect that was not seen in ST2KO mice. CONCLUSIONS These findings indicate that gene products of ST2 contribute to the immune-compromised state during sepsis and the ensuing disturbed homeostasis of lung host defense.
Innate Immunity | 2009
Masja Leendertse; Rob J. L. Willems; Ida A. J. Giebelen; Joris J. T. H. Roelofs; Nico van Rooijen; Marc J. M. Bonten; Tom van der Poll
The increasing incidence of infections with multi-drug resistant Enterococcus faecium necessitates studies to increase knowledge on the pathogenesis of these infections. In this study, the contribution of peritoneal macrophages during E. faecium peritonitis was investigated. In an ex vivo setting, peritoneal macrophages harvested from C57BL/6 mice were responsive to, and able to phagocytose and kill, E. faecium. In vivo, peritoneal macrophages were depleted by intraperitoneal injection of clodronate-encapsulated liposomes, prior to inducing E. faecium peritonitis. Depletion of resident peritoneal macrophages caused a clear delay in peritoneal clearance of E. faecium with increased systemic dissemination. Mice depleted of peritoneal macrophages were able to recruit macrophages and neutrophils to the peritoneal cavity after infection, comparable to control mice. Furthermore, increased levels of peritoneal cytokines and chemokines were found in mice depleted of peritoneal macrophages. This study indicates that peritoneal macrophages are important in the early containment of E. faecium peritonitis and for the regulation of the inflammatory response.
PLOS ONE | 2013
Janetta Top; Fernanda L. Paganelli; Xinglin Zhang; Willem van Schaik; Helen L. Leavis; Miranda van Luit-Asbroek; Tom van der Poll; Masja Leendertse; Marc J. M. Bonten; Rob J. L. Willems
Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp) encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351), which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.