Mathias P. Clausen
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathias P. Clausen.
Scientific Reports | 2015
Débora M. Andrade; Mathias P. Clausen; Jan Keller; Veronika Mueller; Congying Wu; James E. Bear; Stefan W. Hell; B. Christoffer Lagerholm; Christian Eggeling
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.
Nano Letters | 2015
Giuseppe Vicidomini; Haisen Ta; Alf Honigmann; Veronika Mueller; Mathias P. Clausen; Dominic Waithe; Silvia Galiani; Erdinc Sezgin; Alberto Diaspro; Stefan W. Hell; Christian Eggeling
Heterogeneous diffusion dynamics of molecules play an important role in many cellular signaling events, such as of lipids in plasma membrane bioactivity. However, these dynamics can often only be visualized by single-molecule and super-resolution optical microscopy techniques. Using fluorescence lifetime correlation spectroscopy (FLCS, an extension of fluorescence correlation spectroscopy, FCS) on a super-resolution stimulated emission depletion (STED) microscope, we here extend previous observations of nanoscale lipid dynamics in the plasma membrane of living mammalian cells. STED-FLCS allows an improved determination of spatiotemporal heterogeneity in molecular diffusion and interaction dynamics via a novel gated detection scheme, as demonstrated by a comparison between STED-FLCS and previous conventional STED-FCS recordings on fluorescent phosphoglycerolipid and sphingolipid analogues in the plasma membrane of live mammalian cells. The STED-FLCS data indicate that biophysical and biochemical parameters such as the affinity for molecular complexes strongly change over space and time within a few seconds. Drug treatment for cholesterol depletion or actin cytoskeleton depolymerization not only results in the already previously observed decreased affinity for molecular interactions but also in a slight reduction of the spatiotemporal heterogeneity. STED-FLCS specifically demonstrates a significant improvement over previous gated STED-FCS experiments and with its improved spatial and temporal resolution is a novel tool for investigating how heterogeneities of the cellular plasma membrane may regulate biofunctionality.
Current Protein & Peptide Science | 2011
Mathias P. Clausen; B. Christoffer Lagerholm
Single particle tracking (SPT) enables light microscopy at a sub-diffraction limited spatial resolution by a combination of imaging at low molecular labeling densities and computational image processing. SPT and related single molecule imaging techniques have found a rapidly expanded use within the life sciences. This expanded use is due to an increased demand and requisite for developing a comprehensive understanding of the spatial dynamics of bio-molecular interactions at a spatial scale that is equivalent to the size of the molecules themselves, as well as by the emergence of new imaging techniques and probes that have made historically very demanding and specialized bio-imaging techniques more easily accessible and achievable. SPT has in particular found extensive use for analyzing the molecular organization of biological membranes. From these and other studies using complementary techniques it has been determined that the organization of native plasma membranes is heterogeneous over a very large range of spatial and temporal scales. The observed heterogeneities in the organization have the practical consequence that the SPT results in investigations of native plasma membranes are time dependent. Furthermore, because the accessible time dynamics, and also the spatial resolution, in an SPT experiment is mainly dependent on the luminous brightness and photostability of the particular SPT probe that is used, available SPT results are ultimately dependent on the SPT probes. The focus of this review is on the impact that the SPT probe has on the experimental results in SPT.
Anti-Cancer Drugs | 2009
Christina W. Yde; Mathias P. Clausen; Martin V. Bennetzen; Anne E. Lykkesfeldt; Ole G. Mouritsen; Barbara Guerra
Tamoxifen resistance is a major clinical problem in the treatment of estrogen receptor &agr;-positive breast tumors. It is, at present, unclear what exactly causes tamoxifen resistance. For decades, chlorpromazine has been used for treating psychotic diseases, such as schizophrenia. However, the compound is now also recognized as a multitargeting drug with diverse potential applications, for example, it has antiproliferative properties and it can reverse resistance toward antibiotics in bacteria. Furthermore, chlorpromazine can reverse multidrug resistance caused by overexpression of P-glycoprotein in cancer cells. In this study, we have investigated the effect of chlorpromazine on tamoxifen response of human breast cancer cells. We found that chlorpromazine worked synergistically together with tamoxifen with respect to reduction of cell growth and metabolic activity, both in the antiestrogen-sensitive breast cancer cell line, MCF-7, and in a tamoxifen-resistant cell line, established from the MCF-7 cells. Tamoxifen-sensitive and tamoxifen-resistant cells were killed equally well by combined treatment with chlorpromazine and tamoxifen. This synergistic effect could be prevented by addition of estrogen, suggesting that chlorpromazine enhances the effect of tamoxifen through an estrogen receptor-mediated mechanism. To investigate this putative mechanism, we applied biophysical techniques to simple model membranes in the form of unilamellar liposomes of well-defined composition and found that chlorpromazine interacts strongly with lipid bilayers of different composition leading to increased permeability. This implies that chlorpromazine can change influx properties of membranes hence suggesting that chlorpromazine may be a promising chemosensitizing compound for enhancing the cytotoxic effect of tamoxifen.
Journal of Lipid Research | 2016
Erdinc Sezgin; Fatma Betul Can; Falk Schneider; Mathias P. Clausen; Silvia Galiani; Tess A. Stanly; Dominic Waithe; Alexandria Colaco; Alf Honigmann; Daniel Wüstner; Frances M. Platt; Christian Eggeling
Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics.
Methods | 2015
Mathias P. Clausen; Erdinc Sezgin; Jorge Bernardino de la Serna; Dominic Waithe; B. Christoffer Lagerholm; Christian Eggeling
Recent years have seen the development of multiple technologies to investigate, with great spatial and temporal resolution, the dynamics of lipids in cellular and model membranes. One of these approaches is the combination of far-field super-resolution stimulated-emission-depletion (STED) microscopy with fluorescence correlation spectroscopy (FCS). STED-FCS combines the diffraction-unlimited spatial resolution of STED microscopy with the statistical accuracy of FCS to determine sub-millisecond-fast molecular dynamics with single-molecule sensitivity. A unique advantage of STED-FCS is that the observation spot for the FCS data recordings can be tuned to sub-diffraction scales, i.e. <200 nm in diameter, in a gradual manner to investigate fast diffusion of membrane-incorporated labelled entities. Unfortunately, so far the STED-FCS technology has mostly been applied on a few custom-built setups optimised for far-red fluorescent emitters. Here, we summarise the basics of the STED-FCS technology and highlight how it can give novel details into molecular diffusion modes. Most importantly, we present a straightforward way for performing STED-FCS measurements on an unmodified turnkey commercial system using a time-gated detection scheme. Further, we have evaluated the STED-FCS performance of different commonly used green emitting fluorescent dyes applying freely available, custom-written analysis software.
Science Advances | 2017
Marco Fritzsche; R A Fernandes; Veronica T. Chang; H Colin-York; Mathias P. Clausen; James H. Felce; Silvia Galiani; C Erlenkämper; Ana Mafalda Santos; J M Heddleston; I Pedroza-Pacheco; Dominic Waithe; J B de la Serna; B C Lagerholm; Liu T-L.; Chew T-L.; Eric Betzig; Simon J. Davis; Christian Eggeling
Activating T cells reorganize their cortical actin to form a ramified transportation network beneath the immunological synapse. T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions.
Biochimica et Biophysica Acta | 2016
Harald W. Platta; Rebecca Brinkmeier; Christina Reidick; Silvia Galiani; Mathias P. Clausen; Christian Eggeling
Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.
PLOS ONE | 2014
Mathias P. Clausen; Eva C. Arnspang; Byron Ballou; James E. Bear; B. Christoffer Lagerholm
Quantum dots are available in a range of spectrally separated emission colors and with a range of water-stabilizing surface coatings that offers great flexibility for enabling bio-specificity. In this study, we have taken advantage of this flexibility to demonstrate that it is possible to perform a simultaneous investigation of the lateral dynamics in the plasma membrane of i) the transmembrane epidermal growth factor receptor, ii) the glucosylphospatidylinositol-anchored protein CD59, and iii) ganglioside GM1-cholera toxin subunit B clusters in a single cell. We show that a large number of the trajectories are longer than 50 steps, which we by simulations show to be sufficient for robust single trajectory analysis. This analysis shows that the populations of the diffusion coefficients are heterogeneously distributed for all three species, but differ between the different species. We further show that the heterogeneity is decreased upon treating the cells with methyl-β-cyclodextrin.
Journal of Physics D | 2017
B. Christoffer Lagerholm; Débora M. Andrade; Mathias P. Clausen; Christian Eggeling
Abstract Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µm2 s−1, in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1–10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of ≈0.7–1.0 µm2 s−1, and a compartment size of about 100–150 nm.