Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matilde Masini is active.

Publication


Featured researches published by Matilde Masini.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients

Francesco Dotta; Stefano Censini; Astrid G. S. van Halteren; Lorella Marselli; Matilde Masini; Sabrina Dionisi; Franco Mosca; Ugo Boggi; Andrea Onetti Muda; Stefano Del Prato; John F. Elliott; Antonello Covacci; Rino Rappuoli; Bart O. Roep; Piero Marchetti

Type 1 diabetes is characterized by T cell-mediated autoimmune destruction of pancreatic β cells. Several studies have suggested an association between Coxsackie enterovirus seroconversion and onset of disease. However, a direct link between β cell viral infection and islet inflammation has not been established. We analyzed pancreatic tissue from six type 1 diabetic and 26 control organ donors. Immunohistochemical, electron microscopy, whole-genome ex vivo nucleotide sequencing, cell culture, and immunological studies demonstrated Coxsackie B4 enterovirus in specimens from three of the six diabetic patients. Infection was specific of β cells, which showed nondestructive islet inflammation mediated mainly by natural killer cells. Islets from enterovirus-positive samples displayed reduced insulin secretion in response to glucose and other secretagogues. In addition, virus extracted from positive islets was able to infect β cells from human islets of nondiabetic donors, causing viral inclusions and signs of pyknosis. None of the control organ donors showed signs of viral infection. These studies provide direct evidence that enterovirus can infect β cells in patients with type 1 diabetes and that infection is associated with inflammation and functional impairment.


The EMBO Journal | 2012

DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients

Michael Volkmar; Sarah Dedeurwaerder; Daniel Andrade Da Cunha; Matladi N. Ndlovu; Matthieu Defrance; Rachel Deplus; Emilie Calonne; Ute Volkmar; Mariana Igoillo-Esteve; Najib Naamane; Silvia Del Guerra; Matilde Masini; Marco Bugliani; Piero Marchetti; Miriam Cnop; Decio L. Eizirik; François Fuks

In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non‐diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non‐diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in β‐cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.


Diabetologia | 2005

Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients

Marcello Anello; R Lupi; D. Spampinato; Salvatore Piro; Matilde Masini; Ugo Boggi; S. Del Prato; Agata Maria Rabuazzo; Francesco Purrello; Piero Marchetti

Aims/hypothesisLittle information is available on the insulin release properties of pancreatic islets isolated from type 2 diabetic subjects. Since mitochondria represent the site where important metabolites that regulate insulin secretion are generated, we studied insulin release as well as mitochondrial function and morphology directly in pancreatic islets isolated from type 2 diabetic patients.MethodsIslets were prepared by collagenase digestion and density gradient purification, and insulin secretion in response to glucose and arginine was assessed by the batch incubation method. Adenine nucleotides, mitochondrial membrane potential, the expression of UCP-2, complex I and complex V of the respiratory chain, and nitrotyrosine levels were evaluated and correlated with insulin secretion.ResultsCompared to control islets, diabetic islets showed reduced insulin secretion in response to glucose, and this defect was associated with lower ATP levels, a lower ATP/ADP ratio and impaired hyperpolarization of the mitochondrial membrane. Increased protein expression of UCP-2, complex I and complex V of the respiratory chain, and a higher level of nitrotyrosine were also found in type 2 diabetic islets. Morphology studies showed that control and diabetic beta cells had a similar number of mitochondria; however, mitochondrial density volume was significantly higher in type 2 diabetic beta cells.Conclusions/interpretationIn pancreatic beta cells from type 2 diabetic subjects, the impaired secretory response to glucose is associated with a marked alteration of mitochondrial function and morphology. In particular, UCP-2 expression is increased (probably due to a condition of fuel overload), which leads to lower ATP, decreased ATP/ADP ratio, with consequent reduction of insulin release.


Diabetologia | 2009

Autophagy in human type 2 diabetes pancreatic beta cells

Matilde Masini; Marco Bugliani; R Lupi; S Del Guerra; Ugo Boggi; Franco Filipponi; Lorella Marselli; Pellegrino Masiello; Piero Marchetti

Aims/hypothesisBeta cell loss contributes to type 2 diabetes, with increased apoptosis representing an underlying mechanism. Autophagy, i.e. the physiological degradation of damaged organelles and proteins, may, if altered, be associated with a distinct form of cell death. We studied several features of autophagy in beta cells from type 2 diabetic patients and assessed the role of metabolic perturbation and pharmacological intervention.MethodsPancreatic samples were obtained from organ donors and isolated islets prepared both by collagenase digestion and density gradient centrifugation. Beta cell morphology and morphometry were studied by electron microscopy. Gene expression studies were performed by quantitative RT-PCR.ResultsUsing electron microscopy, we observed more dead beta cells in diabetic (2.24 ± 0.53%) than control (0.66 ± 0.52%) samples (p < 0.01). Massive vacuole overload (suggesting altered autophagy) was associated with 1.18 ± 0.54% dead beta cells in type 2 diabetic samples and with 0.36 ± 0.26% in control samples (p < 0.05). Density volume of autophagic vacuoles and autophagosomes was significantly higher in diabetic beta cells. Unchanged gene expression of beclin-1 and ATG1 (also known as ULK1), and reduced transcription of LAMP2 and cathepsin B and D was observed in type 2 diabetic islets. Exposure of non-diabetic islets to increased NEFA concentration led to a marked increase of vacuole accumulation, together with enhanced beta cell death, which was associated with decreased LAMP2 expression. Metformin ameliorated autophagy alterations in diabetic beta cells and beta cells exposed to NEFA, a process associated with normalisation of LAMP2 expression.Conclusions/interpretationBeta cells in human type 2 diabetes have signs of altered autophagy, which may contribute to loss of beta cell mass. To preserve beta cell mass in diabetic patients, it may be necessary to target multiple cell-death pathways.


Experimental Gerontology | 2003

Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis.

Alessandra Del Roso; Simona Vittorini; Gabriella Cavallini; Alessio Donati; Zina Gori; Matilde Masini; Maria Pollera; Ettore Bergamini

Autophagy is a universal, highly regulated mechanism responsible for the degradation of long-lived proteins, cytomembranes and organelles during fasting and may be the cell repair mechanism that mediates the anti-ageing effects of calorie restriction (Bergamini and Gori, 1995). The function of autophagy was studied in vivo on male Sprague Dawley rats fed ad libitum or 40% food restricted. Autophagy was induced in overnight fasted rats by the injection of an anti-lipolytic agent and was investigated by electron microscopy. Changes in regulatory plasma nutrients and hormones were assessed and rate of proteolysis was calculated from the release of 14C(6)-valine from pre-labelled resident proteins. Results in rats fed ad libitum showed that autophagic-proteolytic response to antilypolitic agents was paramount in one month-old rats; was high but delayed in 2 month-old rats, decreased remarkably in 6 month-old rats and almost negligible at older age. Parallel ageing-related changes were observed in the effects of treatment lowering glucose and insulin plasma levels. Calorie restriction prevented all changes. In view of the known suppressive effects of insulin, it may be concluded that the age-changes of autophagy are secondary to the ageing-related alteration in glucose metabolism and hormone levels, whose appearance is delayed by calorie restriction. Data may support the hypothesis that ad libitum feeding accelerates the rate of ageing by raising insulin plasma levels and suppressing autophagy and membrane maintenance, and that calorie restriction may break this vicious circle.


Diabetes | 2014

RNA-sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate

Miriam Cnop; Baroj Abdulkarim; Guy Bottu; Daniel Andrade Da Cunha; Mariana Igoillo-Esteve; Matilde Masini; Jean Valéry Turatsinze; Thasso Griebel; Olatz Villate; Izortze Santin; Marco Bugliani; Laurence Ladrière; Lorella Marselli; Mark I. McCarthy; Piero Marchetti; Michael Sammeth; Decio L. Eizirik

Pancreatic β-cell dysfunction and death are central in the pathogenesis of type 2 diabetes (T2D). Saturated fatty acids cause β-cell failure and contribute to diabetes development in genetically predisposed individuals. Here we used RNA sequencing to map transcripts expressed in five palmitate-treated human islet preparations, observing 1,325 modified genes. Palmitate induced fatty acid metabolism and endoplasmic reticulum (ER) stress. Functional studies identified novel mediators of adaptive ER stress signaling. Palmitate modified genes regulating ubiquitin and proteasome function, autophagy, and apoptosis. Inhibition of autophagic flux and lysosome function contributed to lipotoxicity. Palmitate inhibited transcription factors controlling β-cell phenotype, including PAX4 and GATA6. Fifty-nine T2D candidate genes were expressed in human islets, and 11 were modified by palmitate. Palmitate modified expression of 17 splicing factors and shifted alternative splicing of 3,525 transcripts. Ingenuity Pathway Analysis of modified transcripts and genes confirmed that top changed functions related to cell death. Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of transcription factor binding sites in palmitate-modified transcripts revealed a role for PAX4, GATA, and the ER stress response regulators XBP1 and ATF6. This human islet transcriptome study identified novel mechanisms of palmitate-induced β-cell dysfunction and death. The data point to cross talk between metabolic stress and candidate genes at the β-cell level.


Diabetes-metabolism Research and Reviews | 2007

Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose.

S Del Guerra; M Grupillo; Matilde Masini; R Lupi; Marco Bugliani; S Torri; Ugo Boggi; M Del Chiaro; Fabio Vistoli; Franco Mosca; S. Del Prato; Piero Marchetti

Decreased beta‐cell mass, mainly due to apoptosis, is crucial for the development and progression of type 2 diabetes. Chronic exposure to high glucose levels is a probable underlying mechanism, whereas the role of oral anti‐diabetic agents (sulphonylureas in particular) is still unsettled.


Diabetes | 2013

Reduction of Circulating Neutrophils Precedes and Accompanies Type 1 Diabetes

Andrea Valle; Gian Maria Giamporcaro; Marina Scavini; Angela Stabilini; Pauline Grogan; Eleonora Bianconi; Guido Sebastiani; Matilde Masini; Norma Maugeri; Laura Porretti; Riccardo Bonfanti; Franco Meschi; Maurizio De Pellegrin; Arianna Lesma; Silvano Rossini; Lorenzo Piemonti; Piero Marchetti; Francesco Dotta; Emanuele Bosi; Manuela Battaglia

Human type 1 diabetes (T1D) is an autoimmune disease associated with major histocompatibility complex polymorphisms, β-cell autoantibodies, and autoreactive T cells. However, there is increasing evidence that innate cells may also play critical roles in T1D. We aimed to monitor peripheral immune cells in early stages of T1D (i.e., in healthy autoantibody-positive subjects) and in more advanced phases of the disease (i.e., at disease onset and years after diagnosis). We found a mild but significant and reproducible peripheral neutropenia that both precedes and accompanies the onset of T1D. This reduction was not due to peripheral neutrophil cell death, impaired differentiation, or the presence of anti-neutrophil antibodies. Neutrophils were observed by electron microscopy and immunohistochemical analysis in the exocrine pancreas of multiorgan donors with T1D (both at onset and at later stages of the disease) and not in that of multiorgan donors with type 2 diabetes or nondiabetic donors. These pancreas-infiltrating neutrophils mainly localized at the level of very small blood vessels. Our findings suggest the existence of a hitherto unrecognized clinical phenotype that might reflect unexplored pathogenic pathways underlying T1D.


Cell Death & Differentiation | 2007

Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets

Rita Gallo; Federica Gambelli; Barbara Gava; F. Sasdelli; V. Tellone; Matilde Masini; Piero Marchetti; Francesco Dotta; Vincenzo Sorrentino

Cellular models and culture conditions for in vitro expansion of insulin-producing cells represent a key element to develop cell therapy for diabetes. Initial evidence that human β-cells could be expanded after undergoing a reversible epithelial–mesenchymal transition has been recently negated by genetic lineage tracing studies in mice. Here, we report that culturing human pancreatic islets in the presence of serum resulted in the emergence of a population of nestin-positive cells. These proliferating cells were mainly C-peptide negative, although in the first week in culture, proliferating cells, insulin promoter factor-1 (Ipf-1) positive, were observed. Later passages of islet-derived cells were Ipf-1 negative and displayed a mesenchymal phenotype. These human pancreatic islet-derived mesenchymal (hPIDM) cells were expanded up to 1014 cells and were able to differentiate toward adipocytes, osteocytes and chondrocytes, similarly to mesenchymal stem/precursor cells. Interestingly, however, under serum-free conditions, hPIDM cells lost the mesenchymal phenotype, formed islet-like clusters (ILCs) and were able to produce and secrete insulin. These data suggest that, although these cells are likely to result from preexisting mesenchymal cells rather than β-cells, hPIDM cells represent a valuable model for further developments toward future replacement therapy in diabetes.


PLOS ONE | 2012

Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets.

Luisa Martino; Matilde Masini; Michela Novelli; Pascale Beffy; Marco Bugliani; Lorella Marselli; Pellegrino Masiello; Piero Marchetti; Vincenzo De Tata

We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.

Collaboration


Dive into the Matilde Masini's collaboration.

Top Co-Authors

Avatar

Piero Marchetti

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge