Pellegrino Masiello
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pellegrino Masiello.
Diabetes | 1998
Pellegrino Masiello; Christophe Broca; René Gross; M. Roye; Michèle Manteghetti; Dominique Hillaire-Buys; Michela Novelli; Gérard Ribes
We took advantage of the partial protection exerted by suitable dosages of nicotinamide against the β-cytotoxic effect of streptozotocin (STZ) to create a new experimental diabetic syndrome in adult rats that appears closer to NIDDM than other available animal models with regard to insulin responsiveness to glucose and sulfonylureas. Among the various dosages of nicotinamide tested in 3-month-old Wistar rats (100–350 mg/kg body wt), the dosage of 230 mg/kg, given intraperitoneally 15 min before STZ administration (65 mg/kg i.v.) yielded a maximum of animals with moderate and stable nonfasting hyperglycemia (155 ± 3 vs. 121 ± 3 mg/dl in controls; P < 0.05) and 40% preservation of pancreatic insulin stores. We also evaluated β-cell function both in vitro and in vivo 4–9 weeks after inducing diabetes. In the isolated perfused pancreas, insulin response to glucose elevation (5–11 mmol/l) was clearly present, although significantly reduced with respect to controls (P < 0.01). Moreover, the insulin response to tolbutamide (0.19 mmol/l) was similar to that observed in normal pancreases. Perfused pancreases from diabetic animals also exhibited a striking hypersensitivity to arginine infusion (7 mmol/l). In rats administered STZ plus nicotinamide, intravenous glucose tolerance tests revealed clear abnormalities in glucose tolerance and insulin responsiveness, which were interestingly reversed by tolbutamide administration (40 mg/kg i.v.). In conclusion, this novel NIDDM syndrome with reduced pancreatic insulin stores, which is similar to human NIDDM in that it has a significant response to glucose (although abnormal in kinetics) and preserved sensitivity to tolbutamide, may provide a particularly advantageous tool for pharmacological investigations of new insulinotropic agents.
Diabetologia | 2008
Charlotte Ling; S Del Guerra; R Lupi; Tina Rönn; Charlotte Granhall; Holger Luthman; Pellegrino Masiello; Piero Marchetti; Leif Groop; S. Del Prato
Aims/hypothesisInsulin secretion in pancreatic islets is dependent upon mitochondrial function and production of ATP. The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator-1 alpha (protein PGC-1α; gene PPARGC1A) is a master regulator of mitochondrial genes and its expression is decreased and related to impaired oxidative phosphorylation in muscle from patients with type 2 diabetes. Whether it plays a similar role in human pancreatic islets is not known. We therefore investigated if PPARGC1A expression is altered in islets from patients with type 2 diabetes and whether this expression is influenced by genetic (PPARGC1A Gly482Ser polymorphism) and epigenetic (DNA methylation) factors. We also tested if experimental downregulation of PPARGC1A expression in human islets influenced insulin secretion.MethodsThe PPARGC1A Gly482Ser polymorphism was genotyped in human pancreatic islets from 48 non-diabetic and 12 type 2 diabetic multi-organ donors and related to PPARGC1A mRNA expression. DNA methylation of the PPARGC1A promoter was analysed in pancreatic islets from ten type 2 diabetic and nine control donors. Isolated human islets were transfected with PPARGC1A silencing RNA (siRNA).ResultsPPARGC1A mRNA expression was reduced by 90% (p < 0.005) and correlated with the reduction in insulin secretion in islets from patients with type 2 diabetes. After downregulation of PPARGC1A expression in human islets by siRNA, insulin secretion was reduced by 41% (p ≤ 0. 01). We were able to ascribe reduced PPARGC1A expression in islets to both genetic and epigenetic factors, i.e. a common PPARGC1A Gly482Ser polymorphism was associated with reduced PPARGC1A mRNA expression (p < 0.00005) and reduced insulin secretion (p < 0.05). In support of an epigenetic influence, the PPARGC1A gene promoter showed a twofold increase in DNA methylation in diabetic islets compared with non-diabetic islets (p < 0.04).Conclusions/interpretationWe have shown for the first time that PPARGC1A might be important in human islet insulin secretion and that expression of PPARGC1A in human islets can be regulated by both genetic and epigenetic factors.
Diabetologia | 2009
Matilde Masini; Marco Bugliani; R Lupi; S Del Guerra; Ugo Boggi; Franco Filipponi; Lorella Marselli; Pellegrino Masiello; Piero Marchetti
Aims/hypothesisBeta cell loss contributes to type 2 diabetes, with increased apoptosis representing an underlying mechanism. Autophagy, i.e. the physiological degradation of damaged organelles and proteins, may, if altered, be associated with a distinct form of cell death. We studied several features of autophagy in beta cells from type 2 diabetic patients and assessed the role of metabolic perturbation and pharmacological intervention.MethodsPancreatic samples were obtained from organ donors and isolated islets prepared both by collagenase digestion and density gradient centrifugation. Beta cell morphology and morphometry were studied by electron microscopy. Gene expression studies were performed by quantitative RT-PCR.ResultsUsing electron microscopy, we observed more dead beta cells in diabetic (2.24 ± 0.53%) than control (0.66 ± 0.52%) samples (p < 0.01). Massive vacuole overload (suggesting altered autophagy) was associated with 1.18 ± 0.54% dead beta cells in type 2 diabetic samples and with 0.36 ± 0.26% in control samples (p < 0.05). Density volume of autophagic vacuoles and autophagosomes was significantly higher in diabetic beta cells. Unchanged gene expression of beclin-1 and ATG1 (also known as ULK1), and reduced transcription of LAMP2 and cathepsin B and D was observed in type 2 diabetic islets. Exposure of non-diabetic islets to increased NEFA concentration led to a marked increase of vacuole accumulation, together with enhanced beta cell death, which was associated with decreased LAMP2 expression. Metformin ameliorated autophagy alterations in diabetic beta cells and beta cells exposed to NEFA, a process associated with normalisation of LAMP2 expression.Conclusions/interpretationBeta cells in human type 2 diabetes have signs of altered autophagy, which may contribute to loss of beta cell mass. To preserve beta cell mass in diabetic patients, it may be necessary to target multiple cell-death pathways.
American Journal of Physiology-endocrinology and Metabolism | 1999
Christophe Broca; René Gross; Pierre Petit; Yves Sauvaire; Michèle Manteghetti; Michel Tournier; Pellegrino Masiello; Ramon Gomis; Gérard Ribes
We have recently shown in vitro that 4-hydroxyisoleucine (4-OH-Ile), an amino acid extracted from fenugreek seeds, potentiates insulin secretion in a glucose-dependent manner. The present study was designed to investigate whether 4-OH-Ile could exert in vivo insulinotropic and antidiabetic properties. For this purpose, intravenous or oral glucose tolerance tests (IVGTTs and OGTTs, respectively) were performed not only in normal animals but also in a type II diabetes rat model. During IVGTT in normal rats or OGTT in normal dogs, 4-OH-Ile (18 mg/kg) improved glucose tolerance. The lactonic form of 4-OH-Ile was ineffective in normal rats. In non-insulin-dependent diabetic (NIDD) rats, a single intravenous administration of 4-OH-Ile (50 mg/kg) partially restored glucose-induced insulin response without affecting glucose tolerance; a 6-day subchronic administration of 4-OH-Ile (50 mg/kg, daily) reduced basal hyperglycemia, decreased basal insulinemia, and slightly, but significantly, improved glucose tolerance. In vitro, 4-OH-Ile (200 μM) potentiated glucose (16.7 mM)-induced insulin release from NIDD rat-isolated islets. So, the antidiabetic effects of 4-OH-Ile on NIDD rats result, at least in part, from a direct pancreatic B cell stimulation.We have recently shown in vitro that 4-hydroxyisoleucine (4-OH-Ile), an amino acid extracted from fenugreek seeds, potentiates insulin secretion in a glucose-dependent manner. The present study was designed to investigate whether 4-OH-Ile could exert in vivo insulinotropic and antidiabetic properties. For this purpose, intravenous or oral glucose tolerance tests (IVGTTs and OGTTs, respectively) were performed not only in normal animals but also in a type II diabetes rat model. During IVGTT in normal rats or OGTT in normal dogs, 4-OH-Ile (18 mg/kg) improved glucose tolerance. The lactonic form of 4-OH-Ile was ineffective in normal rats. In non-insulin-dependent diabetic (NIDD) rats, a single intravenous administration of 4-OH-Ile (50 mg/kg) partially restored glucose-induced insulin response without affecting glucose tolerance; a 6-day subchronic administration of 4-OH-Ile (50 mg/kg, daily) reduced basal hyperglycemia, decreased basal insulinemia, and slightly, but significantly, improved glucose tolerance. In vitro, 4-OH-Ile (200 microM) potentiated glucose (16.7 mM)-induced insulin release from NIDD rat-isolated islets. So, the antidiabetic effects of 4-OH-Ile on NIDD rats result, at least in part, from a direct pancreatic B cell stimulation.
PLOS ONE | 2012
Luisa Martino; Matilde Masini; Michela Novelli; Pascale Beffy; Marco Bugliani; Lorella Marselli; Pellegrino Masiello; Piero Marchetti; Vincenzo De Tata
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.
Diabetes | 1995
Piero Marchetti; R Giannarelli; Sabrina Cosimi; Pellegrino Masiello; A Coppelli; Paolo Viacava; R. Navalesi
The limited availability of human donors makes the search for alternative islet sources mandatory for future developments in pancreatic islet transplantation. In this study, we report on the massive isolation of bovine islets of proven in vitro and in vivo viability. The islets were prepared by collagenase digestion, sequential filtrations, and density-gradient purification by modifying a technique previously developed in our laboratory for the porcine pancreas. The prepurification yield was 2,743 +/- 78 islet equivalents (IE)/g pancreas (mean +/- SE), with a postpurification recovery of 78.7 +/- 2.2%. Purity ranged from 80 to 90%. The histological and immunocytochemical studies demonstrated the identity and integrity of the islets with well-preserved insulin-, glucagon-, and somatostatin-containing cells. The morphological integrity of cultured bovine islets was demonstrated for up to 4 weeks from isolation. Insulin secretion from freshly isolated islets was similar at 3.3 mmol/l glucose (0.36 +/- 0.06 pmol.IE-1.min-1) and at 14 mmol/l glucose (0.42 +/- 0.00 pmol.IE-1.min-1), and it increased significantly (P < 0.01) at 25 mmol/l glucose (1.44 +/- 0.12 pmol.IE-1.min-1). Arginine, theophylline, and propionic acid increased insulin secretion from freshly isolated islets at 3.3 and 14 mmol/l glucose, but not at 25 mmol/l glucose. Islets cultured at 37 degrees C in CMRL 1066 culture medium for at least 10 days were shown to become responsive to a lower glucose concentration, as demonstrated by the significant increase of insulin release in response to 14 mmol/l glucose, when compared with basal secretion. This recovered responsivity to glucose was maintained after 4 weeks of culture.(ABSTRACT TRUNCATED AT 250 WORDS)
PLOS ONE | 2007
Marcella Funicello; Michela Novelli; Maurizio Ragni; Teresa Vottari; Cesare Cocuzza; Joaquin Soriano-Lopez; Chiara Chiellini; Federico Boschi; Pasquina Marzola; Pellegrino Masiello; Paul Saftig; Ferruccio Santini; René St-Jacques; Sylvie Desmarais; Nicolas Morin; Joseph A. Mancini; M. David Percival; Aldo Pinchera; Margherita Maffei
Growing evidences indicate that proteases are implicated in adipogenesis and in the onset of obesity. We previously reported that the cysteine protease cathepsin K (ctsk) is overexpressed in the white adipose tissue (WAT) of obese individuals. We herein characterized the WAT and the metabolic phenotype of ctsk deficient animals (ctsk−/−). When the growth rate of ctsk−/− was compared to that of the wild type animals (WT), we could establish a time window (5–8 weeks of age) within which ctsk−/−display significantly lower body weight and WAT size as compared to WT. Such a difference was not observable in older mice. Upon treatment with high fat diet (HFD) for 12 weeks ctsk−/− gained significantly less weight than WT and showed reduced brown adipose tissue, liver mass and a lower percentage of body fat. Plasma triglycerides, cholesterol and leptin were significantly lower in HFD-fed-ctsk−/− as compared to HFD-fed WT animals. Adipocyte lipolysis rates were increased in both young and HFD-fed-ctsk−/−, as compared to WT. Carnitine palmitoyl transferase-1 activity, was higher in mitochondria isolated from the WAT of HFD treated ctsk−/− as compared to WT. Together, these data indicate that ctsk ablation in mice results in reduced body fat content under conditions requiring a rapid accumulation of fat stores. This observation could be partly explained by an increased release and/or utilization of FFA and by an augmented ratio of lipolysis/lipogenesis. These results also demonstrate that under a HFD, ctsk deficiency confers a partial resistance to the development of dyslipidemia.
Molecular and Cellular Endocrinology | 2001
Michela Novelli; Marta E Fabregat; Josefa Fernandez-Álvarez; Ramon Gomis; Pellegrino Masiello
In a new experimental type 2 diabetic syndrome, a 40% reduction of pancreatic beta cells was observed by morphometric analysis. In diabetic islets, as compared to control islets, insulin release was decreased in response to high glucose but not to other stimuli, and total glucose oxidation and utilization were unchanged or slightly reduced. The extent of metabolic and functional impairment appeared proportional to the beta-cell loss. However, a substantial decrease was found in protein level and activity (by 77 and 60%, respectively, versus controls) of mitochondrial FAD-glycerophosphate dehydrogenase (mGDH), the key enzyme of the glycerophosphate shuttle. Interestingly, in diabetic islets, as recently reported for mGDH-deficient transgenic mice, definite functional alterations (mainly in response to D-glyceraldehyde) were only obtained upon pharmacological blockade of the second shuttle (i.e. malate-aspartate) responsible for mitochondrial transfer of reducing equivalents. In conclusion, in this diabetes model with reduction of beta-cell mass, the islets, despite decreased mGDH amount and activity, appear metabolically and functionally active in vitro, likely through the intervention of adaptive mechanisms, yet prone to failure in challenging situations.
Journal of Chromatography B: Biomedical Sciences and Applications | 1991
Vanna Fierabracci; Pellegrino Masiello; Michela Novelli; Ettore Bergamini
An amino acid analysis by reversed-phase high-performance liquid chromatography after precolumn derivatization with phenyl isothiocyanate was adapted to the determination of free amino acids in plasma or other biological fluids and in tissue homogenates. Preparation of samples included deproteinization by 3% sulphosalicylic acid, and careful removal under high vacuum of residual phenyl isothiocyanate after derivatization. A Waters Pico-Tag column (15 cm long) was used, immersed in a water-bath at 38 degrees C. In rat or human plasma, separation of 23 individual amino acids, plus the unresolved pair tryptophan and ornithine, was obtained within 13 min. Including the time for column washing and re-equilibration, samples could be chromatographed at 23-min intervals. Variability was tested for each amino acid by calculating the coefficients of variation of retention times (less than 1% in the average) and peak areas (less than 4% for both intra-day and inter-day determinations). The linearity for each standard amino acid was remarkable over the concentration range 3-50 nmol/ml. The mean recovery of amino acid standards added to plasma prior to derivatization was 97 +/- 0.8%, except for aspartate (82%) and glutamate (81%). This method is rapid (almost three samples per hour can be analysed, more than in any other reported technique), with satisfactory precision, sensitivity and reproducibility. Therefore, it is well suited for routine analysis of free amino acids in both clinical and research work.
The International Journal of Biochemistry & Cell Biology | 2008
Marta Menegazzi; Michela Novelli; Pascale Beffy; V. D’Aleo; Elisa Tedeschi; R Lupi; Elisa Zoratti; Piero Marchetti; Hisanori Suzuki; Pellegrino Masiello
In both type 1 and type 2 diabetes, increased production of cytokines on autoimmune or metabolic basis is supposed to trigger an inflammatory process leading to dysfunction and death of pancreatic beta-cells. Therefore, anti-inflammatory pharmacological approaches aimed at blocking cytokine signalling pathways and consequent cytotoxicity in beta-cells are highly advisable. Based on previous evidence of cytokine antagonistic effects in other cell types, we explored the protective action of Hypericum perforatum (St-Johns-wort) extract and its component hyperforin against cytokine-induced functional impairment and apoptosis in the INS-1E beta-cell line, searching for the underlying mechanisms. The results showed that either St-Johns-wort extract or hyperforin (at 1-3 microM) prevented cytokine-induced impairment in glucose-stimulated insulin secretion and protected cells against apoptosis in a dose-dependent fashion. Inducible-NO-synthase expression was also potently hindered by the vegetal compounds. Interestingly, cytokine-induced activations of the signal-transducer-and-activator-of-transcription-1 (STAT-1) and the nuclear-factor-kappaB (NF-kappaB) were both down-regulated by SJW extract or HPF (range 0.5-5 microM) when evaluated by electrophoretic-mobility-shift-assay. Other transcription factors (CBF-1, SP-1) were unaffected. Components of SJW extract other than HPF were much less effective in down-regulating cytokine signalling. Significantly, inhibition of cytokine-elicited STAT-1 and NF-kappaB activation was confirmed in isolated rat and human islets incubated in the presence of these vegetal compounds. In conclusion, St-Johns-wort extract and hyperforin are non-peptidyl compounds which, at low concentrations, target key mechanisms of cytokine-induced beta-cell injury, thereby improving beta-cell function and survival. Thus, they are potentially valuable for the prevention or limitation of beta-cell loss in diabetes.