Matt Fish
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matt Fish.
Cell | 1998
Kenneth M. Cadigan; Matt Fish; Eric Rulifson; Roel Nusse
In Drosophila wing imaginal discs, the Wingless (Wg) protein acts as a morphogen, emanating from the dorsal/ventral (D/V) boundary of the disc to directly define cell identities along the D/V axis at short and long range. Here, we show that high levels of a Wg receptor, Drosophila frizzled 2 (Dfz2), stabilize Wg, allowing it to reach cells far from its site of synthesis. Wg signaling represses Dfz2 expression, creating a gradient of decreasing Wg stability moving toward the D/V boundary. This repression of Dfz2 is crucial for the normal shape of Wg morphogen gradient as well as the response of cells to the Wg signal. In contrast to other ligand-receptor relationships where the receptor limits diffusion of the ligand, Dfz2 broadens the range of Wg action by protecting it from degradation.
Cell Stem Cell | 2008
Derk ten Berge; Wouter Koole; Christophe Fuerer; Matt Fish; Elif Eroglu; Roel Nusse
Embryonic stem cells (ESCs) form descendants of all three germ layers when differentiated as aggregates, termed embryoid bodies. In vivo, differentiation of cells depends on signals and morphogen gradients that provide instructive and positional cues, but do such gradients exist in embryoid bodies? We report here the establishment of anteroposterior polarity and the formation of a primitive streak-like region in the embryoid body, dependent on local activation of the Wnt pathway. In this region, cells undergo an epithelial-to-mesenchymal transition and differentiate into mesendodermal progenitors. Exogenous Wnt3a protein posteriorizes the embryoid body, resulting in predominantly mesendodermal differentiation. Conversely, inhibiting Wnt signaling promotes anterior character and results in neurectodermal differentiation. The activation of Wnt signaling and primitive streak formation requires external signals but is self-reinforcing after initiation. Our findings show that the Wnt pathway mediates the local execution of a gastrulation-like process in the embryoid body, which displays an unexpected degree of self-organization.
Nature | 2015
Bruce Wang; Ludan Zhao; Matt Fish; Catriona Y. Logan; Roel Nusse
The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2 in mice, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thereby differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes, and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity.
Genetics | 2006
Jun Zhang; Karen L. Schulze; P. Robin Hiesinger; Kaye Suyama; Stream Wang; Matt Fish; Melih Acar; Roger A. Hoskins; Hugo J. Bellen; Matthew P. Scott
Rab proteins are small GTPases that play important roles in transport of vesicle cargo and recruitment, association of motor and other proteins with vesicles, and docking and fusion of vesicles at defined locations. In vertebrates, >75 Rab genes have been identified, some of which have been intensively studied for their roles in endosome and synaptic vesicle trafficking. Recent studies of the functions of certain Rab proteins have revealed specific roles in mediating developmental signal transduction. We have begun a systematic genetic study of the 33 Rab genes in Drosophila. Most of the fly proteins are clearly related to specific vertebrate proteins. We report here the creation of a set of transgenic fly lines that allow spatially and temporally regulated expression of Drosophila Rab proteins. We generated fluorescent protein-tagged wild-type, dominant-negative, and constitutively active forms of 31 Drosophila Rab proteins. We describe Drosophila Rab expression patterns during embryogenesis, the subcellular localization of some Rab proteins, and comparisons of the localization of wild-type, dominant-negative, and constitutively active forms of selected Rab proteins. The high evolutionary conservation and low redundancy of Drosophila Rab proteins make these transgenic lines a useful tool kit for investigating Rab functions in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kimberly A. Mulligan; Christophe Fuerer; Wendy Ching; Matt Fish; Karl Willert; Roel Nusse
Lipid-modified Wnt/Wingless (Wg) proteins can signal to their target cells in a short- or long-range manner. How these hydrophobic proteins travel through the extracellular environment remains an outstanding question. Here, we report on a Wg binding protein, Secreted Wg-interacting molecule (Swim), that facilitates Wg diffusion through the extracellular matrix. Swim, a putative member of the Lipocalin family of extracellular transport proteins, binds to Wg with nanomolar affinity in a lipid-dependent manner. In quantitative signaling assays, Swim is sufficient to maintain the solubility and activity of purified Wg. In Drosophila, swim RNAi phenotypes resemble wg loss-of-function phenotypes in long-range signaling. We propose that Swim is a cofactor that promotes long-range Wg signaling in vivo by maintaining the solubility of Wg.
Nature Protocols | 2007
Matt Fish; Amy C. Groth; Michele P. Calos; Roel Nusse
We describe a microinjection-based φC31 integrase mRNA-mediated method for creating transgenic Drosophila strains. This approach is more efficient than traditional methods and ensures that the transgene is targeted to a precise genomic position. The method involves targeting integration of an exogenous plasmid (containing the transgene and sequences to facilitate integration) to a preplaced recipient site in the Drosophila genome. The plasmid is coinjected into embryos with mRNA encoding the φC31 integrase, the enzyme that catalyzes the integration reaction. Using the protocol described here, transgenic lines can be established from, on average, 46% of fertile adults obtained after injection, and all integrations should be targeted to the chosen genomic insertion site. The whole procedure, from injection to established transgenic stocks, can be completed in three generations (approximately 1 month) and can be adapted for other types of transgenesis and mRNA injections in Drosophila.
Lab on a Chip | 2006
Stefan Zappe; Matt Fish; Matthew P. Scott; Olav Solgaard
We have developed an automated system based on microelectromechanical systems (MEMS) injectors for reliable mass-injection of Drosophila embryos. Targeted applications are high-throughput RNA interference (RNAi) screens. Our injection needles are made of silicon nitride. The liquid to be injected is stored in an integrated 500 nl reservoir, and an externally applied air pressure pulse precisely controls the injected volume. A steady-state water flow rate per applied pressure of 1.2 nl s(-1) bar(-1) was measured for a needle with channel width, height and length of 6.1 microm, 2.3 microm and 350 microm, respectively. A typical volume of 60 pl per embryo can be reliably and rapidly delivered within tens of milliseconds. Theoretical predictions of flow rates match measured values within +/-10%. Embryos are attached to a glass slide surface and covered with oil. Packages with the injector chip and the embryo slide are mounted on motorized xyz-stages. Two cameras allow the user to quickly align the needle tip to alignment marks on the glass slide. Our system then automatically screens the glass slide for embryos and reliably detects and injects more than 98% of all embryos. Survival rates after deionized (DI) water injection of 80% and higher were achieved. A first RNAi experiment was successfully performed with double-stranded RNA (dsRNA) corresponding to the segment polarity gene armadillo at a concentration of 0.01 microM. Almost 80% of the injected embryos expressed an expected strong loss-of-function phenotype. Our system can replace current manual injection technologies and will support systematic identification of Drosophila gene functions.
Development | 2005
Karen S Ho; Kaye Suyama; Matt Fish; Matthew P. Scott
The mechanism by which the secreted signaling molecule Hedgehog (Hh) elicits concentration-dependent transcriptional responses from cells is not well understood. In the Drosophila wing imaginal disc, Hh signaling differentially regulates the transcription of target genes decapentaplegic (dpp), patched (ptc) and engrailed (en) in a dose-responsive manner. Two key components of the Hh signal transduction machinery are the kinesin-related protein Costal2 (Cos2) and the nuclear protein trafficking regulator Suppressor of Fused [Su(fu)]. Both proteins regulate the activity of the transcription factor Cubitus interruptus (Ci) in response to the Hh signal. We have analyzed the activities of mutant forms of Cos2 in vivo and found effects on differential target gene transcription. A point mutation in the motor domain of Cos2 results in a dominant-negative form of the protein that derepresses dpp but not ptc. Repression of ptc in the presence of the dominant-negative form of Cos2 requires Su(fu), which is phosphorylated in response to Hh in vivo. Overexpression of wild-type or dominant-negative cos2 represses en. Our results indicate that differential Hh target gene regulation can be accomplished by differential sensitivity of Cos2 and Su(Fu) to Hh.
Genetics | 2005
Michael Povelones; Rob Howes; Matt Fish; Roel Nusse
The frizzled (fz) gene in Drosophila controls two distinct signaling pathways: it directs the planar cell polarization (PCP) of epithelia and it regulates cell fate decisions through Armadillo (Arm) by acting as a receptor for the Wnt protein Wingless (Wg). With the exception of dishevelled (dsh), the genes functioning in these two pathways are distinct. We have taken a genetic approach, based on a series of new and existing fz alleles, for identifying individual amino acids required for PCP or Arm signaling. For each allele, we have attempted to quantify the strength of signaling by phenotypic measurements. For PCP signaling, the defect was measured by counting the number of cells secreting multiple hairs in the wing. We then examined each allele for its ability to participate in Arm signaling by the rescue of fz mutant embryos with maternally provided fz function. For both PCP and Arm signaling we observed a broad range of phenotypes, but for every allele there is a strong correlation between its phenotypic strength in each pathway. Therefore, even though the PCP and Arm signaling pathways are genetically distinct, the set of signaling-defective fz alleles affected both pathways to a similar extent. This suggests that fz controls these two different signaling activities by a common mechanism. In addition, this screen yielded a set of missense mutations that identify amino acids specifically required for fz signaling function.
international conference on solid state sensors actuators and microsystems | 2003
Stefan Zappe; Ozgur Sahin; Xiaojing Zhang; Eileen E. M. Furlong; Matt Fish; Matthew P. Scott; Olav Solgaard
We present measurements and simulation of fluid flow and sphere motion in a pressure-driven microfluidic sorter designed for Drosophila embryos. We simulated the flow fields for different channel layouts and flow parameters to find geometries and conditions for optimised embryo movement. The microfluidic switch has a designed switching time of 360 /spl mu/s. We validated the sorter design with fluid experiments in devices fabricated from silicon and Pyrex wafers. The experimental and simulated results are compared both qualitatively and quantitatively by examining the concentration distribution of fluids. This type of microfluidic sorter is promising for micromanipulation of a variety of biological cells, and provides automated operations for higher throughput and accuracy.