Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suhua Feng is active.

Publication


Featured researches published by Suhua Feng.


Nature | 2008

Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning

Shawn J. Cokus; Suhua Feng; Xiaoyu Zhang; Zugen Chen; Barry Merriman; Christian D. Haudenschild; Sriharsa Pradhan; Stanley F. Nelson; Matteo Pellegrini; Steven E. Jacobsen

Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.


Science | 2010

Epigenetic Reprogramming in Plant and Animal Development

Suhua Feng; Steven E. Jacobsen; Wolf Reik

Epigenetic modifications of the genome are generally stable in somatic cells of multicellular organisms. In germ cells and early embryos, however, epigenetic reprogramming occurs on a genome-wide scale, which includes demethylation of DNA and remodeling of histones and their modifications. The mechanisms of genome-wide erasure of DNA methylation, which involve modifications to 5-methylcytosine and DNA repair, are being unraveled. Epigenetic reprogramming has important roles in imprinting, the natural as well as experimental acquisition of totipotency and pluripotency, control of transposons, and epigenetic inheritance across generations. Small RNAs and the inheritance of histone marks may also contribute to epigenetic inheritance and reprogramming. Reprogramming occurs in flowering plants and in mammals, and the similarities and differences illuminate developmental and reproductive strategies.


Nature | 2010

Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by Aid deficiency

Christian Popp; Wendy Dean; Suhua Feng; Shawn J. Cokus; Simon Andrews; Matteo Pellegrini; Steven E. Jacobsen; Wolf Reik

Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95-/-, also called Uhrf1-/-) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Conservation and divergence of methylation patterning in plants and animals

Suhua Feng; Shawn J. Cokus; Xiaoyu Zhang; Pao Yang Chen; Magnolia Bostick; Mary G. Goll; Jonathan Hetzel; Jayati Jain; Steven H. Strauss; Marnie E. Halpern; Chinweike Ukomadu; Kirsten C. Sadler; Sriharsa Pradhan; Matteo Pellegrini; Steven E. Jacobsen

Cytosine DNA methylation is a heritable epigenetic mark present in many eukaryotic organisms. Although DNA methylation likely has a conserved role in gene silencing, the levels and patterns of DNA methylation appear to vary drastically among different organisms. Here we used shotgun genomic bisulfite sequencing (BS-Seq) to compare DNA methylation in eight diverse plant and animal genomes. We found that patterns of methylation are very similar in flowering plants with methylated cytosines detected in all sequence contexts, whereas CG methylation predominates in animals. Vertebrates have methylation throughout the genome except for CpG islands. Gene body methylation is conserved with clear preference for exons in most organisms. Furthermore, genes appear to be the major target of methylation in Ciona and honey bee. Among the eight organisms, the green alga Chlamydomonas has the most unusual pattern of methylation, having non-CG methylation enriched in exons of genes rather than in repeats and transposons. In addition, the Dnmt1 cofactor Uhrf1 has a conserved function in maintaining CG methylation in both transposons and gene bodies in the mouse, Arabidopsis, and zebrafish genomes.


Nature | 2008

Coordinated regulation of Arabidopsis thaliana development by light and gibberellins

Suhua Feng; Cristina Martinez; Giuliana Gusmaroli; Yu Wang; Junli Zhou; Feng Wang; Liying Chen; Lu Yu; Juan M. Iglesias-Pedraz; Stefan Kircher; Eberhard Schäfer; Xiangdong Fu; Liu-Min Fan; Xing Wang Deng

Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development. GA induces degradation of DELLA proteins via the ubiquitin/proteasome pathway, but light promotes accumulation of DELLA proteins by reducing GA levels. It was proposed that DELLA proteins restrain plant growth largely through their effect on gene expression. However, the precise mechanism of their function in coordinating GA signalling and gene expression remains unknown. Here we characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor. In the absence of GA, nuclear-localized DELLA proteins accumulate to higher levels, interact with phytochrome-interacting factor 3 (PIF3, a bHLH-type transcription factor) and prevent PIF3 from binding to its target gene promoters and regulating gene expression, and therefore abrogate PIF3-mediated light control of hypocotyl elongation. In the presence of GA, GID1 proteins (GA receptors) elevate their direct interaction with DELLA proteins in the nucleus, trigger DELLA protein’s ubiquitination and proteasome-mediated degradation, and thus release PIF3 from the negative effect of DELLA proteins.


Nature | 2010

Relationship between nucleosome positioning and DNA methylation

Ramakrishna K. Chodavarapu; Suhua Feng; Yana V. Bernatavichute; Pao-Yang Chen; Hume Stroud; Yanchun Yu; Jonathan Hetzel; Frank Kuo; Jin Kim; Shawn J. Cokus; David Casero; María Bernal; Peter Huijser; Amander T. Clark; Ute Krämer; Sabeeha S. Merchant; Xiaoyu Zhang; Steven E. Jacobsen; Matteo Pellegrini

Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana using massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified 10-base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA, indicating that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron–exon and exon–intron boundaries. RNA polymerase II (Pol II) was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is also enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition.


Cell | 2013

Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome.

Hume Stroud; Maxim V. C. Greenberg; Suhua Feng; Yana V. Bernatavichute; Steven E. Jacobsen

Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.


Genome Biology | 2011

5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells

Hume Stroud; Suhua Feng; Shannon R. M. Kinney; Sriharsa Pradhan; Steven E. Jacobsen

Background5-Hydroxymethylcytosine (5hmC) was recently found to be abundantly present in certain cell types, including embryonic stem cells. There is growing evidence that TET proteins, which convert 5-methylcytosine (5mC) to 5hmC, play important biological roles. To further understand the function of 5hmC, an analysis of the genome-wide localization of this mark is required.ResultsHere, we have generated a genome-wide map of 5hmC in human embryonic stem cells by hmeDIP-seq, in which hydroxymethyl-DNA immunoprecipitation is followed by massively parallel sequencing. We found that 5hmC is enriched in enhancers as well as in gene bodies, suggesting a potential role for 5hmC in gene regulation. Consistent with localization of 5hmC at enhancers, 5hmC was significantly enriched in histone modifications associated with enhancers, such as H3K4me1 and H3K27ac. 5hmC was also enriched in other protein-DNA interaction sites, such as OCT4 and NANOG binding sites. Furthermore, we found that 5hmC regions tend to have an excess of G over C on one strand of DNA.ConclusionsOur findings suggest that 5hmC may be targeted to certain genomic regions based both on gene expression and sequence composition.


Journal of Biological Chemistry | 2004

Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants.

Yule Liu; Tessa M. Burch-Smith; Michael Schiff; Suhua Feng; Savithramma P. Dinesh-Kumar

SGT1 and Rar1 are important signaling components of resistance (R) gene-mediated plant innate immune responses. Here we report that SGT1 and Rar1 associate with the molecular chaperone Hsp90. In addition, we show that Hsp90 associates with the resistance protein N that confers resistance to tobacco mosaic virus. This suggests that Hsp90-SGT1-Rar1 and R proteins might exist in one complex. Suppression of Hsp90 in Nicotiana benthamiana plants shows that it plays an important role in plant growth and development. In addition, Hsp90 suppression in NN plants compromises N-mediated resistance to tobacco mosaic virus. Our results reveal a new role for SGT1- and Rar1-associated chaperone machinery in R gene-mediated defense signaling.


Nature Structural & Molecular Biology | 2014

Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis

Hume Stroud; Truman Do; Jiamu Du; Xuehua Zhong; Suhua Feng; Lianna M. Johnson; Dinshaw J. Patel; Steven E. Jacobsen

DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.

Collaboration


Dive into the Suhua Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hume Stroud

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn J. Cokus

University of California

View shared research outputs
Top Co-Authors

Avatar

Dinshaw J. Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xuehua Zhong

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Israel Ausin

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Jiamu Du

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge