Matteo Tintori
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matteo Tintori.
Optical Engineering | 2013
M. Civitani; S. Basso; Oberto Citterio; Paolo Conconi; Mauro Ghigo; Giovanni Pareschi; Laura Proserpio; B. Salmaso; Giorgia Sironi; D. Spiga; Gianpiero Tagliaferri; A. Zambra; Francesco Martelli; Giancarlo Parodi; Pierluigi Fumi; Daniele Gallieni; Matteo Tintori; Marcos Bavdaz; Eric Wille
Abstract. Future lightweight and long-focal-length x-ray telescopes must guarantee a good angular resolution (e.g., 5 arc sec HEW) and reach an unprecedented large effective area. This goal can be reached with the slumping of borosilicate glass sheets that allow the fabrication of lightweight and low-cost x-ray optical units (XOU). These XOUs, based on mirror segments, have to be assembled together to form complete multishell Wolter-I optics. The technology for the fabrication and the integration of these XOUs is under development in Europe, funded by European Space Agency, and led by the Brera Observatory (INAF-OAB). While the achievement of the required surface accuracy on the glass segments by means of a hot slumping technique is a challenging aspect, adequate attention must be given to the correct integration and coalignment of the mirror segments into the XOUs. To this aim, an innovative assembly concept has been investigated, based on glass reinforcing ribs. The ribs connect pairs of consecutive foils, stacked into a XOU, with both structural and functional roles, providing robust monolithic stacks of mirror plates. Moreover, this integration concept allows the correction of residual low-frequency errors still present on the mirror foil profile after slumping. We present the integration concept, the related error budget, and the results achieved so far with a semi-robotic integration machine especially designed and realized to assemble slumped glass foils into XOUs.
Proceedings of SPIE | 2008
Elise Vernet; L. Jochum; Paolo La Penna; Norbert Hubin; Riccardo Muradore; Joan Manel Casalta; Ivar Kjelberg; Jean-Christophe Sinquin; Frédéric Locre; Pierre Morin; Raphaël Cousty; Jean-Marie Lurçon; Jean-Jacques Roland; Bruno Crépy; Eric Gabriel; Roberto Biasi; Mario Andrighettoni; Gerald Angerer; Daniele Gallieni; Marco Mantegazza; Matteo Tintori; Emilio Molinari; Daniela Tresoldi; Giorgio Toso; Paolo Spanò; Marco Riva; Giuseppe Crimi; Armando Riccardi; Gilles Marque; Jean-Louis Carel
A 42 meters telescope does require adaptive optics to provide few milli arcseconds resolution images. In the current design of the E-ELT, M4 provides adaptive correction while M5 is the field stabilization mirror. Both mirrors have an essential role in the E-ELT telescope strategy since they do not only correct for atmospheric turbulence but have also to cancel part of telescope wind shaking and static aberrations. Both mirrors specifications have been defined to avoid requesting over constrained requirements in term of stroke, speed and guide stars magnitude. Technical specifications and technological issues are discussed in this article. Critical aspects and roadmap to assess the feasibility of such mirrors are outlined.
Proceedings of SPIE | 2013
Marcos Bavdaz; Eric Wille; Kotska Wallace; Brian Shortt; Sebastiaan Fransen; N. Rando; Maximilien J. Collon; Marcelo Ackermann; Giuseppe Vacanti; Ramses Günther; Jeroen Haneveld; Mark Olde Riekerink; Arenda Koelewijn; Coen van Baren; Dirk Kampf; Karl-Heintz Zuknik; Arnd Reutlinger; Finn Erland Christensen; Desiree Della Monica Ferreira; Anders Clemen Jakobsen; Michael Krumrey; Peter Müller; Vadim Burwitz; Giovanni Pareschi; Mauro Ghigo; M. Civitani; Laura Proserpio; D. Spiga; S. Basso; B. Salmaso
Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class high energy astrophysics missions, aiming at angular resolutions of 5” and providing effective areas of one or more square meters at a few keV. This paper reports on the development activities led by ESA, and the status of the SPO and SGO technologies, including progress on high performance multilayer reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36].
Proceedings of SPIE | 2016
Roberto Biasi; Mauro Manetti; Mario Andrighettoni; Gerald Angerer; Dietrich Pescoller; Christian Patauner; Daniele Gallieni; Matteo Tintori; Marco Mantegazza; Pierluigi Fumi; Paolo Lazzarini; Runa Briguglio; Marco Xompero; Giorgio Pariani; Armando Riccardi; Elise Vernet; Lorenzo Pettazzi; Paul Lilley; Marc Cayrel
The E-ELT M4 adaptive unit is a fundamental part of the E-ELT: it provides the facility level adaptive optics correction that compensates the wavefront distortion induced by atmospheric turbulence and partially corrects the structural deformations caused by wind. The unit is based on the contactless, voice-coil technology already successfully deployed on several large adaptive mirrors, like the LBT, Magellan and VLT adaptive secondary mirrors. It features a 2.4m diameter flat mirror, controlled by 5316 actuators and divided in six segments. The reference structure is monolithic and the cophasing between the segments is guaranteed by the contactless embedded metrology. The mirror correction commands are usually transferred as modal amplitudes, that are checked by the M4 controller through a smart real-time algorithm that is capable to handle saturation effects. A large hexapod provides the fine positioning of the unit, while a rotational mechanism allows switching between the two Nasmyth foci. The unit has entered the final design and construction phase in July 2015, after an advanced preliminary design. The final design review is planned for fall 2017; thereafter, the unit will enter the construction and test phase. Acceptance in Europe after full optical calibration is planned for 2022, while the delivery to Cerro Armazones will occur in 2023. Even if the fundamental concept has remained unchanged with respect to the other contactless large deformable mirrors, the specific requirements of the E-ELT unit posed new design challenges that required very peculiar solutions. Therefore, a significant part of the design phase has been focused on the validation of the new aspects, based on analysis, numerical simulations and experimental tests. Several experimental tests have been executed on the Demonstration Prototype, which is the 222 actuators prototype developed in the frame of the advanced preliminary design. We present the main project phases, the current design status and the most relevant results achieved by the validation tests.
Optifab 2013 | 2013
Mauro Ghigo; Laura Proserpio; S. Basso; Oberto Citterio; M. Civitani; Giovanni Pareschi; B. Salmaso; Giorgia Sironi; D. Spiga; G. Tagliaferri; G. Vecchi; A. Zambra; Giancarlo Parodi; Francesco Martelli; Daniele Gallieni; Matteo Tintori; Marcos Bavdaz; Eric Wille; Ivan Ferrario; Vadim Burwitz
The Astronomical Observatory of Brera (INAF-OAB, Italy), with the financing support of the European Space Agency (ESA), has concluded a study regarding a glass shaping technology for the production of grazing incidence segmented x-ray optics. This technique uses a hot slumping phase, in which pressure is actively applied on thin glass foils being shaped, to form a cylindrical approximation of Wolter I x-ray segments, and a subsequent cold slumping phase, in which the final Wolter I profile is then freeze into the glass segments during their integration in elemental X-ray Optical Units. The final goal of this study was the manufacturing of a prototype containing a number of slumped pair plates (meaning parabola and hyperbola couples) having representative dimensions to be tested both in UV light and in x-rays at the Panter facility (Germany). In this paper, the INAF-OAB slumping technique, comprising a shaping step and an integration step is described, together with the results obtained on the manufactured prototype modules: the first prototype was aimed to test the ad-hoc designed and built semi-automatic Integration MAchine (IMA) and debug its control software. The most complete module comprises 40 slumped segments of Schott D263 glass type of dimension 200 mm x 200 mm and thickness of 0.4 mm, slumped on Zerodur K20 mould and stacked together through glued BK7 glass structural ribs to form the first entire x-ray optical module ever built totally composed by glass. A last prototype was aimed at demonstrate the use of Schott glass AF32 type instead of D263. In particular, a new hot slumping experimental set-up is described whose advantage is to permit a better contact between mould and glass during the shaping process. The integration procedure of the slumped segments into the elemental module is also reviewed.
Proceedings of SPIE | 2012
Elise Vernet; Marc Cayrel; Norbert Hubin; Michael Mueller; Roberto Biasi; Daniele Gallieni; Matteo Tintori
A 40 meters class telescope does require adaptive optics to provide few milli arcseconds resolution images. In the current design of the E-ELT, M4 provides adaptive correction and has also to cancel part of telescope wind shaking and static aberrations. The 2.4 meters adaptive mirror will provide as well Nasmyth focus selection. We will present the main design drivers and the main specifications quaternary mirror will have to meet. We will discuss what the challenges are in term of stability and performance of the associated key technologies. We will finally describe the current baseline design and the required schedule and work plan to adequately manufacture the E-ELT quartenary mirror.
Proceedings of SPIE | 2011
M. Civitani; S. Basso; Marcos Bavdaz; Oberto Citterio; Paolo Conconi; Daniele Gallieni; Mauro Ghigo; Francesco Martelli; Giovanni Pareschi; Giancarlo Parodi; Laura Proserpio; Giorgia Sironi; D. Spiga; G. Tagliaferri; Matteo Tintori; Eric Wille; A. Zambra
The International X-ray Observatory (IXO) is a joint mission concept studied by the ESA, NASA, and JAXA space agencies. The main goal of the mission design is to achieve a large effective area (>2.5m2 at 1 keV) and a good angular resolution (5 arcsec HEW at 1 keV) at the same time. The Brera Astronomical Observatory - INAF (Italy), under the support of ESA, is developing a method for the realization of the X-Ray Optical Units, based on the use of slumped thin glass segments to form densely packed modules in a Wolter type I optical configuration. In order to reach the very challenging integration requirements, it has been developed an innovative assembly approach for aligning and mounting the IXO mirror segments. The method is based on the use of an integration mould for each foil. In particular the glass segment is forced to adhere to the integration mould in order to maintain the optimal figure without deformations until the integration of the foil in the stack is completed. In this way an active correction for major existing figure errors after slumping is also achieved. Moreover reinforcing ribs are used in order to connect the facets to each-other and to realize a robust monolithic stack of plates. In this paper we present the design, the development and the validation status of a special Integration Machine (IMA) that has been specifically developed to allow the integration of the Plate Pairs into prototypal X-Ray Optical Unit stacks.
Proceedings of SPIE | 2010
Emilio Molinari; Daniela Tresoldi; Giorgio Toso; Paolo Spanò; Ruben Mazzoleni; Marco Riva; Armando Riccardi; Roberto Biasi; Mario Andrighettoni; Gerald Angherer; Daniele Gallieni; Matteo Tintori; Gilles Marque
The challenge of building extremely large telescope pushes forward the parallel ability to measure and test optical components of large sizes. Here we present the optical bench setup for the Demonstration Prototype (DP) of the voice coil controlled adaptive mirror M4AU of the E-ELT. A set of three devices has been chosen and used for the tests, whose results are also shown. The performance demonstrated that this is a viable and trusted technology and the DP tests were highly representative of the whole procedure that could be applied to the real, full size unit.
Proceedings of SPIE | 2010
M. Civitani; S. Basso; Marcos Bavdaz; Oberto Citterio; Paolo Conconi; Daniele Gallieni; Mauro Ghigo; B. Guldimann; Francesco Martelli; G. Pagano; Giovanni Pareschi; Giancarlo Parodi; Laura Proserpio; B. Salmaso; D. Spiga; G. Tagliaferri; Matteo Tintori; Eric Wille; A. Zambra
The International X-ray Observatory (IXO) is being studied as a joint mission by the NASA, ESA and JAXA space agencies. The main goals of the mission are large effective area (>3m2 at 1 keV) and a good angular resolution (<5 arcsec HEW at 1 keV). This paper reports on an activity ongoing in Europe, supported by ESA and led by the Brera Astronomical Observatory (Italy), aiming at providing an alternative method for the realization of the mirror unit assembly. This is based on the use of thin glass segments and an innovative assembly concept making use of glass reinforcing ribs that connect the facets to each-other. A fundamental challenge is the achievement with a hot slumping technique of the required surface accuracy on the glass segments. A key point of the approach is represented by the alignment of the mirror segments and co-alignment of the mirror pairs assembled together. In this paper we present the mirror assembly conceptual design, starting from the design of the optical unit, the error budgets contributing to the image degradation and the performance analysis to assess error sensitivities. Furthermore the related integration concept and the preliminary results obtained are presented.
Proceedings of SPIE | 2016
Runa Briguglio; Carmelo Arcidiacono; Marco Xompero; Franco Lisi; Armando Riccardi; Roberto Biasi; Christian Patauner; Daniele Gallieni; Paolo Lazzarini; Matteo Tintori; Francesco D'Amato; Mauro Pucci; Fabrizio Duò; Christian Vettore; Alessandro Zuccaro Marchi
The Large Aperture Telescope Technology (LATT) goes beyond the current paradigm of future space telescopes, based on a deformable mirror in the pupil relay. Through the LATT project we demonstrated the concept of a low-weight active primary mirror, whose working principle and control strategy benefit from two decades of advances in adaptive optics for ground-based telescopes. We developed a forty centimeter spherical mirror prototype, with an areal density lower than 17 kg/m2, controlled through contactless voice coil actuators with co-located capacitive position sensors. The prototype was subjected to thermo-vacuum, vibration and optical tests, to push its technical readiness toward level 5. In this paper we present the background and the outcomes of the LATT activities under ESA contract (TRP programme), exploring the concept of a lightweight active primary mirror for space telescopes. Active primaries will open the way to very large segmented apertures, actively shaped, which can be lightweight, deployable and accurately phased once in flight.