Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ulisse Ulissi is active.

Publication


Featured researches published by Ulisse Ulissi.


BMC Microbiology | 2012

Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts

Bessem Chouaia; Paolo Rossi; Sara Epis; Michela Mosca; Irene Ricci; Claudia Damiani; Ulisse Ulissi; Elena Crotti; Daniele Daffonchio; Claudio Bandi; Guido Favia

BackgroundIn recent years, acetic acid bacteria have been shown to be frequently associated with insects, but knowledge on their biological role in the arthropod host is limited. The discovery that acetic acid bacteria of the genus Asaia are a main component of the microbiota of Anopheles stephensi makes this mosquito a useful model for studies on this novel group of symbionts. Here we present experimental results that provide a first evidence for a beneficial role of Asaia in An. stephensi.ResultsLarvae of An. stephensi at different stages were treated with rifampicin, an antibiotic effective on wild-type Asaia spp., and the effects on the larval development were evaluated. Larvae treated with the antibiotic showed a delay in the development and an asynchrony in the appearance of later instars. In larvae treated with rifampicin, but supplemented with a rifampicin-resistant mutant strain of Asaia, larval development was comparable to that of control larvae not exposed to the antibiotic. Analysis of the bacterial diversity of the three mosquito populations confirmed that the level of Asaia was strongly decreased in the antibiotic-treated larvae, since the symbiont was not detectable by PCR-DGGE (denaturing gradient gel electrophoresis), while Asaia was consistently found in insects supplemented with rifampicin plus the antibiotic-resistant mutant in the diet, and in those not exposed to the antibiotic.ConclusionsThe results here reported indicate that Asaia symbionts play a beneficial role in the normal development of An. stephensi larvae.


Microbial Ecology | 2010

Mosquito-Bacteria Symbiosis: The Case of Anopheles gambiae and Asaia

Claudia Damiani; Irene Ricci; Elena Crotti; Paolo Rossi; Aurora Rizzi; Patrizia Scuppa; Aida Capone; Ulisse Ulissi; Sara Epis; Marco Genchi; N'Fale Sagnon; Ingrid Faye; Angray S. Kang; Bessem Chouaia; Cheryl Whitehorn; Guelbeogo W. Moussa; Mauro Mandrioli; Fulvio Esposito; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Guido Favia

The symbiotic relationship between Asaia, an α-proteobacterium belonging to the family Acetobacteriaceae, and mosquitoes has been studied mainly in the Asian malaria vector Anopheles stephensi. Thus, we have investigated the nature of the association between Asaia and the major Afro-tropical malaria vector Anopheles gambiae. We have isolated Asaia from different wild and laboratory reared colonies of A. gambiae, and it was detected by PCR in all the developmental stages of the mosquito and in all the specimens analyzed. Additionally, we have shown that it localizes in the midgut, salivary glands and reproductive organs. Using recombinant strains of Asaia expressing fluorescent proteins, we have demonstrated the ability of the bacterium to colonize A. gambiae mosquitoes with a pattern similar to that described for A. stephensi. Finally, fluorescent in situ hybridization on the reproductive tract of females of A. gambiae showed a concentration of Asaia at the very periphery of the eggs, suggesting that transmission of Asaia from mother to offspring is likely mediated by a mechanism of egg-smearing. We suggest that Asaia has potential for use in the paratransgenic control of malaria transmitted by A. gambiae.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011

Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control

Irene Ricci; Michela Mosca; Matteo Valzano; Claudia Damiani; Patrizia Scuppa; Paolo Rossi; Elena Crotti; Alessia Cappelli; Ulisse Ulissi; Aida Capone; Fulvio Esposito; Alberto Alma; Mauro Mandrioli; Luciano Sacchi; Claudio Bandi; Daniele Daffonchio; Guido Favia

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as ‘paratransgenesis’, has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.


Pathogens and Global Health | 2012

Symbiotic control of mosquito borne disease.

Irene Ricci; Matteo Valzano; Ulisse Ulissi; Sara Epis; Alessia Cappelli; Guido Favia

Abstract It is well accepted that the symbiotic relationships insects have established with several microorganisms have had a key role in their evolutionary success. Bacterial symbiosis is also prevalent in insects that are efficient disease vectors, and numerous studies have sought to decrypt the basic mechanisms of the host–symbiont relationships and develop ways to control vector borne diseases. ‘Symbiotic control’, a new multifaceted approach that uses symbiotic microorganisms to control insect pests or reduce vector competence, seems particularly promising. Three such approaches currently at the cutting edge are: (1) the disruption of microbial symbionts required by insect pests; (2) the manipulation of symbionts that can express anti-pathogen molecules within the host; and (3) the introduction of endogenous microbes that affect life-span and vector capacity of the new hosts in insect populations. This work reviews current knowledge on microbial symbiosis in mosquitoes that holds promise for development of symbiotic control for mosquito borne diseases.


Parasites & Vectors | 2015

Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors

Paolo Rossi; Irene Ricci; Alessia Cappelli; Claudia Damiani; Ulisse Ulissi; Maria Vittoria Mancini; Matteo Valzano; Aida Capone; Sara Epis; Elena Crotti; Bessem Chouaia; Patrizia Scuppa; Deepak Joshi; Zhiyong Xi; Mauro Mandrioli; Luciano Sacchi; Scott L. O’Neill; Guido Favia

BackgroundWolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes.MethodsDifferent methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species.ResultsHere we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities.ConclusionsA mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Journal of Applied Entomology | 2011

Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases

Irene Ricci; Claudia Damiani; Paolo Rossi; Aida Capone; Patrizia Scuppa; Alessia Cappelli; Ulisse Ulissi; Michela Mosca; Matteo Valzano; Sara Epis; Elena Crotti; Daniele Daffonchio; Alberto Alma; Luciano Sacchi; Mauro Mandrioli; Claudio Bandi; Guido Favia

Mosquito‐borne diseases pose significant concerns in public health. Microbial symbionts of mosquitoes are attracting quite a lot of interest in relation to the development of novel strategies aimed to reduce mosquito vectorial capacity with particular regard to paratransgenesis that relies on genetically modified mosquito symbionts to express molecules within the vector able to interfere with parasite development and transmission. Here, we review the present status of the knowledge of mosquito–symbionts relationships, focusing on perspective in the application of symbiotic control in developing an efficient management of mosquito‐borne diseases.


PLOS ONE | 2014

A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi

Alessia Cappelli; Ulisse Ulissi; Matteo Valzano; Claudia Damiani; Sara Epis; Maria Gabriella Gabrielli; Stefania Conti; Luciano Polonelli; Claudio Bandi; Guido Favia; Irene Ricci

The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called “killer” yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria.


European Journal of Clinical Microbiology & Infectious Diseases | 2012

Do mosquito-associated bacteria of the genus Asaia circulate in humans?

Sara Epis; P. Gaibani; Ulisse Ulissi; Bessem Chouaia; Irene Ricci; Claudia Damiani; V. Sambri; F. Castelli; F. Buelli; Daniele Daffonchio; Claudio Bandi; Guido Favia

Symbiotic bacteria of the genus Asaia have been proposed as tools for control of mosquito-borne diseases, specifically malaria. However, safety issues are a major concern for paratransgenesis strategies. The aim of this study is to investigate, with immunofluorescence assays and quantitative PCR experiments, whether Asaia spp. is circulating among humans. All human sera and whole blood samples analyzed were negative for Asaia spp., thus suggesting that this organism could be utilized, in the future, as a malaria control tool.


Nucleic Acids Research | 2014

Time-resolved assembly of a nucleoprotein complex between Shigella flexneri virF promoter and its transcriptional repressor H-NS

Ulisse Ulissi; Attilio Fabbretti; Marco Sette; Anna Maria Giuliodori; Roberto Spurio

The virF gene of Shigella, responsible for triggering the virulence cascade in this pathogenic bacterium, is transcriptionally repressed by the nucleoid-associated protein H-NS. The primary binding sites of H-NS within the promoter region of virF have been detected here by footprinting experiments in the presence of H-NS or its monomeric DNA-binding domain (H-NSctd), which displays the same specificity as intact H-NS. Of the 14 short DNA fragments identified, 10 overlap sequences similar to the H-NS binding motif. The ‘fast’, ‘intermediate’ and ‘slow’ H-NS binding events leading to the formation of the nucleoprotein complex responsible for transcription repression have been determined by time-resolved hydroxyl radical footprinting experiments in the presence of full-length H-NS. We demonstrate that this process is completed in ≤1 s and H-NS protections occur simultaneously on site I and site II of the virF promoter. Furthermore, all ‘fast’ protections have been identified in regions containing predicted H-NS binding motifs, in agreement with the hypothesis that H-NS nucleoprotein complex assembles from a few nucleation sites containing high-affinity binding sequences. Finally, data are presented showing that the 22-bp fragment corresponding to one of the HNS binding sites deviates from canonical B-DNA structure at three TpA steps.


Archive | 2012

Facing Malaria Parasite with Mosquito Symbionts

Guido Favia; Irene Ricci; Patrizia Scuppa; Claudia Damiani; Paolo Rossi; Aida Capone; Chenoa De Freece; Matteo Valzano; Alessia Cappelli; Michela Mosca; Ulisse Ulissi

Microbial symbiosis is an ubiquitous aspect of insect life and plays a fundamental role in the adaptation of insects to the most diverse environments. A very large proportion of insects are supposed to carry bacterial symbionts (Chaves et al., 2009). The variety of the relationships between symbionts and insects are very wide as well as biological function exerted by the symbionts and their localisation within the host. In fact, some are located within host cells while some others are outside. The genetic modification of microbial symbionts has been identified as novel tools to fight insect pests and vectors of infectious diseases. In this frame, in the last years, the use of manipulated symbiont has attracted a lot of attention for the potential application in the control of mosquito-borne diseases, with particular interest to malaria control.

Collaboration


Dive into the Ulisse Ulissi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Ricci

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aida Capone

University of Camerino

View shared research outputs
Top Co-Authors

Avatar

Paolo Rossi

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge