Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew E. Grein is active.

Publication


Featured researches published by Matthew E. Grein.


Optics Express | 2012

Photonic ADC: overcoming the bottleneck of electronic jitter

Anatol Khilo; Steven J. Spector; Matthew E. Grein; Amir H. Nejadmalayeri; Charles W. Holzwarth; Michelle Y. Sander; Marcus S. Dahlem; Michael Y. Peng; M. W. Geis; Nicole DiLello; Jung U. Yoon; Ali R. Motamedi; Jason S. Orcutt; Jade P. Wang; Cheryl Sorace-Agaskar; Miloš A. Popović; Jie Sun; Gui-Rong Zhou; Hyunil Byun; Jian Chen; Judy L. Hoyt; Henry I. Smith; Rajeev J. Ram; Michael H. Perrott; Theodore M. Lyszczarz; Erich P. Ippen; Franz X. Kärtner

Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.


IEEE Photonics Technology Letters | 2007

CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band

M. W. Geis; Steven J. Spector; Matthew E. Grein; Robert T. Schulein; J. U. Yoon; Donna M. Lennon; S. Deneault; Fuwan Gan; F. X. Kaertner; Theodore M. Lyszczarz

Submicrometer silicon photodiode waveguides, fabricated on silicon-on-insulator substrates, have photoresponse from <1270 to 1740 nm (0.8 AW-1 at 1550 nm) and a 3-dB bandwidth of 10 to 20 GHz. The p-i-n photodiode waveguide consists of an intrinsic waveguide 500times250 nm where the optical mode is confined and two thin, 50-nm-thick, doped Si wings that extend 5 mum out from either side of the waveguide. The Si wings, which are doped one p-type and the other n-type, make electric contact to the waveguide with minimal effect on the optical mode. The edges of the wings are metalized to increase electrical conductivity. Ion implantation of Si+ 1times10 13 cm-2 at 190 keV into the waveguide increases the optical absorption from 2-3 dBmiddotcm-1 to 200-100 dBmiddotcm-1 and causes the generation of a photocurrent when the waveguide is illuminated with subbandgap radiation. The diodes are not damaged by annealing to 450 degC for 15 s or 300 degC for 15 min. The photoresponse and thermal stability is believed due to an oxygen stabilized divacancy complex formed during ion implantation


Optics Express | 2009

Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW -1 response

M. W. Geis; Steven J. Spector; Matthew E. Grein; J. U. Yoon; Donna M. Lennon; Theodore M. Lyszczarz

SOI CMOS compatible Si waveguide photodetectors are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. Photodiodes have a bandwidth of >35 GHz, an internal quantum efficiency of 0.5 to 10 AW-1, and leakage currents of 0.5 nA to 0.5 microA. Phototransistors have an optical response of 50 AW-1 with a bandwidth of 0.2 GHz. These properties are related to carrier mobilities in the implanted Si waveguide. These detectors exhibit low optical absorption requiring lengths from <0.3 mm to 3 mm to absorb 50% of the incoming light. However, the high bandwidth, high quantum efficiency, low leakage current, and potentially high fabrication yields, make these devices very competitive when compared to other detector technologies.


Optics Express | 2008

CMOS-compatible dual-output silicon modulator for analog signal processing.

Steven J. Spector; M. W. Geis; Gui-Rong Zhou; Matthew E. Grein; F. Gan; Miloš A. Popović; J. U. Yoon; Donna M. Lennon; Erich P. Ippen; Franz X. Kärtner; Theodore M. Lyszczarz

A broadband, Mach-Zehnder-interferometer based silicon optical modulator is demonstrated, with an electrical bandwidth of 26 GHz and V(pi)L of 4 V.cm. The design of this modulator does not require epitaxial overgrowth and is therefore simpler to fabricate than previous devices with similar performance.


IEEE Journal of Selected Topics in Quantum Electronics | 2001

Noise of mode-locked semiconductor lasers

Leaf A. Jiang; Matthew E. Grein; H. A. Haus; Erich P. Ippen

Analytical expressions for the amplitude, frequency, timing, and carrier phase noise of mode-locked laser diodes (MLLDs) are derived. It is found both experimentally and theoretically that carrier dynamics contribute to the total noise of MLLDs. In addition, we demonstrate how to capture the high-frequency timing jitter with optical cross correlations.


Optics Letters | 2002

Quantum-limited noise performance of a mode-locked laser diode

Leaf A. Jiang; Matthew E. Grein; Erich P. Ippen; C. McNeilage; J.H. Searls; Hiroyuki Yokoyama

Low-noise operation of a 9-GHz hybridly mode-locked laser diode is demonstrated. The integrated timing jitter was 47 fs (10 Hz to 10 MHz) and 86 fs (10 Hz to 4.5 GHz), with a pulse width of 6.7 ps. The noise performance as a function of filter bandwidth and oscillator noise is also addressed.


Optics Express | 2007

All silicon infrared photodiodes: photo response and effects of processing temperature

M. W. Geis; Steven J. Spector; Matthew E. Grein; R. J. Schulein; J. U. Yoon; Donna M. Lennon; C. M. Wynn; S. T. Palmacci; F. Gan; Franz X. Kaertner; Theodore M. Lyszczarz

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si(+) implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475 degrees C. 0.25-mm-long diodes annealed to 300 degrees C have a response to 1539 nm radiation of 0.1 A W-(-1) at a reverse bias of 5 V and 1.2 A W(-1) at 20 V. 3-mm-long diodes processed to 475 degrees C exhibited two states, L1 and L2, with photo responses of 0.3 +/-0.1 A W(-1) at 5 V and 0.7 +/-0.2 A W(-1) at 20 V for the L1 state and 0.5 +/-0.2 A W(-1) at 5 V and 4 to 20 A W(-1)-1 at 20 V for the L2 state. The diodes can be switched between L1 and L2. The bandwidths vary from 10 to 20 GHz. These diodes will generate electrical power from the incident radiation with efficiencies from 4 to 10 %.


IEEE Journal of Quantum Electronics | 2002

Measuring timing jitter with optical cross correlations

Leaf A. Jiang; Samuel T. Wong; Matthew E. Grein; Erich P. Ippen; H. A. Haus

The use of optical cross correlations for characterizing timing jitter is investigated. Applications, limitations, and correspondence to radio frequency measurements are presented and clarified. The probability density function of the timing jitter of semiconductor mode-locked lasers is deconvolved from the cross-correlation measurements with the aid of pulse characterization techniques.


Optics Letters | 2003

Timing jitter eater for optical pulse trains.

Leaf A. Jiang; Matthew E. Grein; H. A. Haus; Erich P. Ippen; Hiroyuki Yokoyama

Using a single phase modulator and dispersive fiber, we demonstrate a 12-dB reduction in the phase noise of a train of 6.5-ps pulses at a repetition rate of 10 GHz. A prechirp fiber is shown to improve performance.


Optics Letters | 2002

Observation of quantum-limited timing jitter in an active, harmonically mode-locked fiber laser

Matthew E. Grein; Leaf A. Jiang; H. A. Haus; Erich P. Ippen; C. McNeilage; J.H. Searls; R. S. Windeler

We report on the observation of quantum-limited timing jitter in a harmonically mode-locked soliton fiber laser with an ultralow-noise local oscillator. The effects of amplitude and phase modulation on the spectrum are described and compared with theory.

Collaboration


Dive into the Matthew E. Grein's collaboration.

Top Co-Authors

Avatar

Erich P. Ippen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Steven J. Spector

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Theodore M. Lyszczarz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. W. Geis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Leaf A. Jiang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Donna M. Lennon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

H. A. Haus

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert T. Schulein

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Franz X. Kärtner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. U. Yoon

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge