Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew L. Baker is active.

Publication


Featured researches published by Matthew L. Baker.


Structure | 2012

Outcome of the first electron microscopy validation task force meeting

Richard Henderson; Andrej Sali; Matthew L. Baker; Bridget Carragher; Batsal Devkota; Kenneth H. Downing; Edward H. Egelman; Zukang Feng; Joachim Frank; Nikolaus Grigorieff; Wen Jiang; Steven J. Ludtke; Ohad Medalia; Pawel A. Penczek; Peter B. Rosenthal; Michael G. Rossmann; Michael F. Schmid; Gunnar F. Schröder; Alasdair C. Steven; David L. Stokes; John D. Westbrook; Willy Wriggers; Huanwang Yang; Jasmine Young; Helen M. Berman; Wah Chiu; Gerard J. Kleywegt; Catherine L. Lawson

This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.


Journal of Virology | 2005

Common Ancestry of Herpesviruses and Tailed DNA Bacteriophages

Matthew L. Baker; Wen Jiang; Frazer J. Rixon; Wah Chiu

ABSTRACT Comparative analysis of capsid protein structures in the eukaryote-infecting herpesviruses (Herpesviridae) and the prokaryote-infecting tailed DNA bacteriophages (Caudovirales) revealed a characteristic fold that is restricted to these two virus lineages and is indicative of common ancestry. This fold not only serves as a major architectural element in capsid stability but also enables the conformational flexibility observed during viral assembly and maturation. On the basis of this and other emerging relationships, it seems increasingly likely that the very diverse collection of extant viruses may have arisen from a relatively small number of primordial progenitors.


Nature Structural & Molecular Biology | 2003

Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions.

Wen Jiang; Zongli Li; Matthew L. Baker; Peter E. Prevelige; Wah Chiu

Bacteriophage P22 is a prototypical biological machine used for studying protein complex assembly and capsid maturation. Using cryo-EM, we solved the structures of P22 before and after the capsid maturation at 8.5 Å and 9.5 Å resolutions, respectively. These structures allowed visualization of α-helices and β-sheets from which the capsid protein fold is derived. The capsid fold is similar to that of the coat protein of HK97 bacteriophage. The cryo-EM shows that a large conformational change of the P22 capsid during maturation transition involves not only the domain movement of individual subunits, but also refolding of the capsid protein.


Journal of Molecular Biology | 2009

Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta

Frank DiMaio; Michael D. Tyka; Matthew L. Baker; Wah Chiu; David Baker

We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using both simulated and experimentally generated data, the method consistently increases the accuracy of starting models generated either by comparative modeling or by hand-tracing the density. The method can achieve near-atomic resolution starting from density maps at 4-6 A resolution.


Nature | 2008

Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy

Wen Jiang; Matthew L. Baker; Joanita Jakana; Peter Weigele; Jonathan King; Wah Chiu

A half-century after the determination of the first three-dimensional crystal structure of a protein, more than 40,000 structures ranging from single polypeptides to large assemblies have been reported. The challenge for crystallographers, however, remains the growing of a diffracting crystal. Here we report the 4.5-Å resolution structure of a 22-MDa macromolecular assembly, the capsid of the infectious epsilon15 (ε15) particle, by single-particle electron cryomicroscopy. From this density map we constructed a complete backbone trace of its major capsid protein, gene product 7 (gp7). The structure reveals a similar protein architecture to that of other tailed double-stranded DNA viruses, even in the absence of detectable sequence similarity. However, the connectivity of the secondary structure elements (topology) in gp7 is unique. Protruding densities are observed around the two-fold axes that cannot be accounted for by gp7. A subsequent proteomic analysis of the whole virus identifies these densities as gp10, a 12-kDa protein. Its structure, location and high binding affinity to the capsid indicate that the gp10 dimer functions as a molecular staple between neighbouring capsomeres to ensure the particle’s stability. Beyond ε15, this method potentially offers a new approach for modelling the backbone conformations of the protein subunits in other macromolecular assemblies at near-native solution states.


Nature | 2010

Mechanism of Folding Chamber Closure in a Group II Chaperonin

Junjie Zhang; Matthew L. Baker; Gunnar F. Schröder; Nicholai R. Douglas; Stefanie Reissmann; Joanita Jakana; Matthew Dougherty; Caroline J. Fu; Michael Levitt; Steven J. Ludtke; Judith Frydman; Wah Chiu

Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, ∼1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in lid, which is triggered by ATP hydrolysis. The structural rearrangements and molecular events leading to lid closure are still unknown. Here we report four single particle cryo-electron microscopy (cryo-EM) structures of Mm-cpn, an archaeal group II chaperonin, in the nucleotide-free (open) and nucleotide-induced (closed) states. The 4.3 Å resolution of the closed conformation allowed building of the first ever atomic model directly from the single particle cryo-EM density map, in which we were able to visualize the nucleotide and more than 70% of the side chains. The model of the open conformation was obtained by using the deformable elastic network modelling with the 8 Å resolution open-state cryo-EM density restraints. Together, the open and closed structures show how local conformational changes triggered by ATP hydrolysis lead to an alteration of intersubunit contacts within and across the rings, ultimately causing a rocking motion that closes the ring. Our analyses show that there is an intricate and unforeseen set of interactions controlling allosteric communication and inter-ring signalling, driving the conformational cycle of group II chaperonins. Beyond this, we anticipate that our methodology of combining single particle cryo-EM and computational modelling will become a powerful tool in the determination of atomic details involved in the dynamic processes of macromolecular machines in solution.


Molecular therapy. Nucleic acids | 2013

TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy

Zakaria Grada; Meenakshi Hegde; Tiara Byrd; Donald R. Shaffer; Alexia Ghazi; Vita S. Brawley; Amanda Corder; Kurt Schönfeld; Joachim Koch; Gianpietro Dotti; Helen E. Heslop; Stephen Gottschalk; Winfried S. Wels; Matthew L. Baker; Nabil Ahmed

Targeted T cells are emerging as effective non-toxic therapies for cancer. Multiple elements, however, contribute to the overall pathogenesis of cancer through both distinct and redundant mechanisms. Hence, targeting multiple cancer-specific markers simultaneously could result in better therapeutic efficacy. We created a functional chimeric antigen receptor—the TanCAR, a novel artificial molecule that mediates bispecific activation and targeting of T cells. We demonstrate the feasibility of cumulative integration of structure and docking simulation data using computational tools to interrogate the design and predict the functionality of such a complex bispecific molecule. Our prototype TanCAR induced distinct T cell reactivity against each of two tumor restricted antigens, and produced synergistic enhancement of effector functions when both antigens were simultaneously encountered. Furthermore, the TanCAR preserved the cytolytic ability of T cells upon loss of one of the target molecules and better controlled established experimental tumors by recognition of both targets in an animal disease model. This proof-of-concept approach can be used to increase the specificity of effector cells for malignant versus normal target cells, to offset antigen escape or to allow for targeting the tumor and its microenvironment.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus

Dong Hua Chen; Matthew L. Baker; Corey F. Hryc; Frank DiMaio; Joanita Jakana; Weimin Wu; Matthew Dougherty; Cameron Haase-Pettingell; Michael F. Schmid; Wen Jiang; David Baker; Jonathan King; Wah Chiu

Formation of many dsDNA viruses begins with the assembly of a procapsid, containing scaffolding proteins and a multisubunit portal but lacking DNA, which matures into an infectious virion. This process, conserved among dsDNA viruses such as herpes viruses and bacteriophages, is key to forming infectious virions. Bacteriophage P22 has served as a model system for this study in the past several decades. However, how capsid assembly is initiated, where and how scaffolding proteins bind to coat proteins in the procapsid, and the conformational changes upon capsid maturation still remain elusive. Here, we report Cα backbone models for the P22 procapsid and infectious virion derived from electron cryomicroscopy density maps determined at 3.8- and 4.0-Å resolution, respectively, and the first procapsid structure at subnanometer resolution without imposing symmetry. The procapsid structures show the scaffolding protein interacting electrostatically with the N terminus (N arm) of the coat protein through its C-terminal helix-loop-helix motif, as well as unexpected interactions between 10 scaffolding proteins and the 12-fold portal located at a unique vertex. These suggest a critical role for the scaffolding proteins both in initiating the capsid assembly at the portal vertex and propagating its growth on a T = 7 icosahedral lattice. Comparison of the procapsid and the virion backbone models reveals coordinated and complex conformational changes. These structural observations allow us to propose a more detailed molecular mechanism for the scaffolding-mediated capsid assembly initiation including portal incorporation, release of scaffolding proteins upon DNA packaging, and maturation into infectious virions.


Nature Structural & Molecular Biology | 2001

Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus

Z. Hong Zhou; Matthew L. Baker; Wen Jiang; Matthew Dougherty; Joanita Jakana; Gang Dong; Guangying Lu; Wah Chiu

The three-dimensional structure of rice dwarf virus was determined to 6.8 Å resolution by single particle electron cryomicroscopy. By integrating the structural analysis with bioinformatics, the folds of the proteins in the double-shelled capsid were derived. In the outer shell protein, the uniquely orientated upper and lower domains are composed of similar secondary structure elements but have different relative orientations from that of bluetongue virus in the same Reoviridae family. Differences in both sequence and structure between these proteins may be important in defining virus–host interactions. The inner shell protein adopts a conformation similar to other members of Reoviridae, suggesting a common ancestor that has evolved to infect hosts ranging from plants to animals. Symmetry mismatch between the two shells results in nonequivalent, yet specific, interactions that contribute to the stability of this large macromolecular machine.


Proceedings of the National Academy of Sciences of the United States of America | 2010

4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement

Yao Cong; Matthew L. Baker; Joanita Jakana; David Woolford; Erik J. Miller; Stefanie Reissmann; Ramya Kumar; Alyssa M. Redding-Johanson; Tanveer S. Batth; Aindrila Mukhopadhyay; Steven J. Ludtke; Judith Frydman; Wah Chiu

The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ∼5–10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC’s unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ∼95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC’s cellular substrate specificity.

Collaboration


Dive into the Matthew L. Baker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Ludtke

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanita Jakana

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tao Ju

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nabil Ahmed

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Corey F. Hryc

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tiara Byrd

Center for Cell and Gene Therapy

View shared research outputs
Top Co-Authors

Avatar

Meenakshi Hegde

Center for Cell and Gene Therapy

View shared research outputs
Top Co-Authors

Avatar

Michael F. Schmid

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge