Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Prideaux is active.

Publication


Featured researches published by Matthew Prideaux.


Endocrine Reviews | 2013

The Osteocyte: An Endocrine Cell … and More

Sarah L. Dallas; Matthew Prideaux; Lynda F. Bonewald

Few investigators think of bone as an endocrine gland, even after the discovery that osteocytes produce circulating fibroblast growth factor 23 that targets the kidney and potentially other organs. In fact, until the last few years, osteocytes were perceived by many as passive, metabolically inactive cells. However, exciting recent discoveries have shown that osteocytes encased within mineralized bone matrix are actually multifunctional cells with many key regulatory roles in bone and mineral homeostasis. In addition to serving as endocrine cells and regulators of phosphate homeostasis, these cells control bone remodeling through regulation of both osteoclasts and osteoblasts, are mechanosensory cells that coordinate adaptive responses of the skeleton to mechanical loading, and also serve as a manager of the bones reservoir of calcium. Osteocytes must survive for decades within the bone matrix, making them one of the longest lived cells in the body. Viability and survival are therefore extremely important to ensure optimal function of the osteocyte network. As we continue to search for new therapeutics, in addition to the osteoclast and the osteoblast, the osteocyte should be considered in new strategies to prevent and treat bone disease.


BioTechniques | 2012

Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice

Amber Rath Stern; Matthew M. Stern; Mark Van Dyke; Katharina Jähn; Matthew Prideaux; Lynda F. Bonewald

The purpose of this work was to establish a methodology to enable the isolation and study of osteocytes from skeletally mature young (4-month-old) and old (22-month-old) mice. The location of osteocytes deep within bone is ideal for their function as mechanosensors. However, this location makes the observation and study of osteocytes in vivo technically difficult. Osteocytes were isolated from murine long bones through a process of extended collagenase digestions combined with EDTA-based decalcification. A tissue homogenizer was used to reduce the remaining bone fragments to a suspension of bone particles, which were placed in culture to yield an outgrowth of osteocyte-like cells. All of the cells obtained from this outgrowth that displayed an osteocyte-like morphology stained positive for the osteocyte marker E11/GP38. The osteocyte phenotype was further confirmed by a lack of staining for alkaline phosphatase and the absence of collagen1a1 expression. The outgrowth of osteocytes also expressed additional osteocyte-specific genes such as Sost and Mepe. This technique facilitates the isolation of osteocytes from skeletally mature bone. This novel enabling methodology should prove useful in advancing our understanding of the roles mature osteocytes play in bone health and disease.


Molecular and Cellular Endocrinology | 2015

Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli

Nobuaki Ito; Asiri R. Wijenayaka; Matthew Prideaux; Masakazu Kogawa; Renee T. Ormsby; Andreas Evdokiou; Lynda F. Bonewald; David M. Findlay; Gerald J. Atkins

Fibroblast growth factor-23 (FGF23), produced by osteocytes, is the key physiological regulator of phosphate homeostasis. Sepsis patients often experience transient hypophosphataemia, suggesting the regulation of FGF23 levels by pro-inflammatory factors. Here, we used the osteocyte-like cell line IDG-SW3 to investigate the effect of pro-inflammatory stimuli on FGF23 production. In differentiated IDG-SW3 cultures, basal Fgf23 mRNA was dose-dependently up-regulated by pro-inflammatory cytokines TNF, IL-1β and TWEAK, and bacterial LPS. Similar effects were observed in human bone samples. TNF- and IL-1β-induced Fgf23 expression was NF-κB-dependent. Conversely, mRNA encoding negative regulators of FGF23, Phex, Dmp1 and Enpp1, were suppressed by TNF, IL-1β, TWEAK and LPS, independent of NF-κβ signalling. Galnt3, the protein product of which protects intact FGF23 protein from furin/furin-like proprotein convertase cleavage, increased in response to these treatments. C-terminal FGF23 and intact FGF23 protein levels also increased, the latter only in the presence of Furin inhibitors, suggesting that enzymatic cleavage exerts critical control of active FGF23 secretion by osteocytes. Our results demonstrate in principle that pro-inflammatory stimuli are capable of increasing osteocyte secretion of FGF23, which may contribute to hypophosphataemia during sepsis and possibly other inflammatory conditions.


Current Opinion in Pharmacology | 2016

Osteocytes: The master cells in bone remodelling

Matthew Prideaux; David M. Findlay; Gerald J. Atkins

Bone remodelling is an essential process for shaping and maintaining bone mass in the mature skeleton. During our lifetime bone is constantly being removed by osteoclasts and new bone is formed by osteoblasts. The activities of osteoclasts and osteoblasts must be regulated under a strict balance to ensure that bone homeostasis is maintained. Osteocytes, which form an extensive, multi-functional syncytium throughout the bone, are increasingly considered to be the cells that maintain this balance. Current research is elucidating key signalling pathways by which the osteocyte exerts control over the other cell types in bone and over its own activities, and potential ways in which these pathways may be exploited therapeutically.


Calcified Tissue International | 2014

SaOS2 Osteosarcoma Cells as an In Vitro Model for Studying the Transition of Human Osteoblasts to Osteocytes

Matthew Prideaux; Asiri R. Wijenayaka; D.D. Kumarasinghe; Renee T. Ormsby; Andreas Evdokiou; David M. Findlay; Gerald J. Atkins

The central importance of osteocytes in regulating bone homeostasis is becoming increasingly apparent. However, the study of these cells has been restricted by the relative paucity of cell line models, especially those of human origin. Therefore, we investigated the extent to which SaOS2 human osteosarcoma cells can differentiate into osteocyte-like cells. During culture under the appropriate mineralising conditions, SaOS2 cells reproducibly synthesised a bone-like mineralised matrix and temporally expressed the mature osteocyte marker genes SOST, DMP1, PHEX and MEPE and down-regulated expression of RUNX2 and COL1A1. SaOS2 cells cultured in 3D collagen gels acquired a dendritic morphology, characteristic of osteocytes, with multiple interconnecting cell processes. These findings suggest that SaOS2 cells have the capacity to differentiate into mature osteocyte-like cells under mineralising conditions. PTH treatment of SaOS2 cells resulted in strong down-regulation of SOST mRNA expression at all time points tested. Interestingly, PTH treatment resulted in the up-regulation of RANKL mRNA expression only at earlier stages of differentiation. These findings suggest that the response to PTH is dependent on the differentiation stage of the osteoblast/osteocyte. Together, our results demonstrate that SaOS2 cells can be used as a human model to investigate responses to osteotropic stimuli throughout differentiation to a mature osteocyte-like stage.


Journal of Tissue Engineering and Regenerative Medicine | 2017

Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells: 3D Printed Titanium Implants with Dual Micro- and Nano-Scale Topography

Karan Gulati; Matthew Prideaux; Masakazu Kogawa; Luis Lima-Marques; Gerald J. Atkins; David M. Findlay; Dusan Losic

The success of implantation of materials into bone is governed by effective osseointegration, requiring biocompatibility of the material and the attachment and differentiation of osteoblastic cells. To enhance cellular function in response to the implant surface, micro‐ and nano‐scale topography have been suggested as essential. In this study, we present bone implants based on 3D–printed titanium alloy (Ti6Al4V), with a unique dual topography composed of micron‐sized spherical particles and vertically aligned titania nanotubes. The implants were prepared by combination of 3D–printing and anodization processes, which are scalable, simple and cost‐effective. The osseointegration properties of fabricated implants, examined using human osteoblasts, showed enhanced adhesion of osteoblasts compared with titanium materials commonly used as orthopaedic implants. Gene expression studies at early (day 7) and late (day 21) stages of culture were consistent with the Ti substrates inducing an osteoblast phenotype conducive to effective osseointegration. These implants with the unique combination of micro‐ and nano‐scale topography are proposed as the new generation of multi‐functional bone implants, suitable for addressing many orthopaedic challenges, including implant rejection, poor osseointegration, inflammation, drug delivery and bone healing. Copyright


Bone | 2016

Isolation of osteocytes from human trabecular bone

Matthew Prideaux; Christine Schutz; Asiri R. Wijenayaka; David M. Findlay; David Campbell; Lucian B. Solomon; Gerald J. Atkins

Osteocytes are essential regulators of bone homeostasis. However, they are difficult to study due to their location within the bone mineralised matrix. Although several techniques have been published for the isolation of osteocytes from mouse bone, no such technique has been described for human osteocytes. We have therefore developed a protocol for the isolation of osteocytes from human trabecular bone samples acquired during surgery. The cells were digested from the bone matrix by sequential collagenase and ethylenediaminetetraacetic acid (EDTA) digestions and the cells from later digests displayed characteristic dendritic osteocyte morphology when cultured ex vivo. Furthermore, the cells expressed characteristic osteocyte marker genes, such as E11, dentin matrix protein 1 (DMP1), SOST, matrix extracellular phosphoglycoprotein (MEPE) and phosphate regulating endopeptidase homologue, X-linked (PHEX). In addition, genes associated with osteocyte perilacunar remodelling, including matrix metallopeptidase-13 (MMP13), cathepsin K (CTSK) and carbonic anhydrase 2 (CAR2) were expressed. The cells also responded to parathyroid hormone (PTH) by downregulating SOST mRNA expression and to 1α,25-dihydroxyvitamin D3 (1,25D) by upregulating fibroblast growth factor 23 (FGF23) mRNA expression. Therefore, the cells behave in a similar manner to osteocytes in vivo. These cells represent an important tool in enhancing current knowledge in human osteocyte biology.


Bone | 2016

Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition

Hiroyuki Yamamoto; Bruno Ramos-Molina; Adam N. Lick; Matthew Prideaux; Valeria Albornoz; Lynda F. Bonewald; Iris Lindberg

FGF23 is an O-glycosylated circulating peptide hormone with a critical role in phosphate homeostasis; it is inactivated by cellular proprotein convertases in a pre-release degradative pathway. We have here examined the metabolism of FGF23 in a model bone cell line, IDG-SW3, prior to and following differentiation, as well as in regulated secretory cells. Labeling experiments showed that the majority of (35)S-labeled FGF23 was cleaved to smaller fragments which were constitutively secreted by all cell types. Intact FGF23 was much more efficiently stored in differentiated than in undifferentiated IDG-SW3 cells. The prohormone convertase PC2 has recently been implicated in FGF23 degradation; however, FGF23 was not targeted to forskolin-stimulatable secretory vesicles in a regulated cell line, suggesting that it lacks a targeting signal to PC2-containing compartments. In vitro, PC1/3 and PC2, but not furin, efficiently cleaved glycosylated FGF23; surprisingly, PC5/6 accomplished a small amount of conversion. FGF23 has recently been shown to be phosphorylated by the kinase FAM20C, a process which was shown to reduce FGF23 glycosylation and promote its cleavage; our in vitro data, however, show that phosphorylation does not directly impact cleavage, as both PC5/6 and furin were able to efficiently cleave unglycosylated, phosphorylated FGF23. Using qPCR, we found that the expression of FGF23 and PC5/6, but not PC2 or furin, increased substantially following osteoblast to osteocyte differentiation. Western blotting confirmed the large increase in PC5/6 expression upon differentiation. FGF23 has been linked to a variety of bone disorders ranging from autosomal dominant hypophosphatemic rickets to chronic kidney disease. A better understanding of the biosynthetic pathway of this hormone may lead to new treatments for these diseases.


PLOS ONE | 2015

Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms

Matthew Prideaux; Sarah L. Dallas; Ning Zhao; Erica D. Johnsrud; Patricia A. Veno; Dayong Guo; Yuji Mishina; Stephen E. Harris; Lynda F. Bonewald

Parathyroid Hormone (PTH) can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R), which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1) promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA), exchange proteins activated by cAMP (Epac), protein kinase C (PKC) or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K) agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.


Materials Science and Engineering: C | 2016

Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability

Karan Gulati; Masakazu Kogawa; Matthew Prideaux; David M. Findlay; Gerald J. Atkins; Dusan Losic

There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements.

Collaboration


Dive into the Matthew Prideaux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynda F. Bonewald

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Farquharson

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Farquharson

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

N. Loveridge

Rowett Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge