Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masakazu Kogawa is active.

Publication


Featured researches published by Masakazu Kogawa.


PLOS ONE | 2011

Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway

Asiri R. Wijenayaka; Masakazu Kogawa; Hui Peng Lim; Lynda F. Bonewald; David M. Findlay; Gerald J. Atkins

Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANKL∶OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.


Journal of Neuroinflammation | 2013

Critical role of p38 MAPK for regeneration of the sciatic nerve following crush injury in vivo

Naoki Kato; Masahito Matsumoto; Masakazu Kogawa; Gerald J. Atkins; David M. Findlay; Takahiko Fujikawa; Hiromi Oda; Masato Ogata

BackgroundThe physiological function of p38α, which is an isoform of p38 MAPK, has been investigated previously in several studies using pharmacological inhibitors. However, the results regarding whether p38α promotes or inhibits nerve regeneration in vivo have been controversial.MethodsWe generated novel p38α mutant mice (sem mice) with a point mutation in the region encoding the p38α substrate-docking-site, which serves as a limited loss-of-function model of p38α. In the present study, we utilized sem mice and wild-type littermates (wt mice) to investigate the physiological role of p38α in nerve regeneration following crush injuries.ResultsAt four weeks after crush injury, the average axon diameter and the average axon area in sem mice were significantly smaller than those in wt mice. The average myelin sheath thickness in sem mice was reduced compared to wt mice, but no significant difference was observed in the G-ratio between the two groups. The sciatic functional index value demonstrated that functional nerve recovery in sem mice following crush injury was delayed, which is consistent with the histological findings. To investigate the underlying mechanisms of these findings, we examined inflammatory responses of the sciatic nerve by immunohistochemistry and western blotting. At an early phase following crush injury, sem mice showed remarkably lower expression of inflammatory cytokines, such as TNF-α and IL-1β, than wt mice. The expression of Caspase-3 and Tenascin-C were also lower in sem mice. Conversely, at a late phase of the response, sem mice showed considerably higher expression of TNF-α and of IL-1β with lower expression of S-100 than wt mice.ConclusionsThis is the first study of the physiological role of p38 MAPK in nerve regeneration that does not rely on the use of pharmacological inhibitors. Our results indicate that p38α insufficiency may cause an inflammatory disorder, resulting in a delay of histological and functional nerve recovery following crush injury. We conclude that p38 MAPK has an important physiological role in nerve regeneration and may be important for controlling both initiation of inflammation and recovery from nerve injury.


Endocrinology | 2010

Osteoclastic Metabolism of 25(OH)-Vitamin D3: A Potential Mechanism for Optimization of Bone Resorption

Masakazu Kogawa; David M. Findlay; Paul H. Anderson; Renee T. Ormsby; Cristina Vincent; Howard A. Morris; Gerald J. Atkins

The extrarenal synthesis of 1α,25 dihydroxyvitamin D3 (1,25D) has been demonstrated in a number of cell types including osteoblasts and cells of the monocyte/macrophage lineage. The skeleton appears responsive to serum levels of the 1,25D precursor, 25 hydroxyvitamin D3 (25D), in terms of bone mineralization parameters. The effect of metabolism of 25D into active 1,25D by osteoclast lineage cells is unknown. We found that CYP27B1 mRNA expression increased with exposure of human peripheral blood mononuclear cells (PBMCs) to macrophage colony-stimulating factor in the presence or absence of receptor activator of nuclear factor-κB ligand. Consistent with this, human osteoclast cultures incubated with 25D produced measurable quantities of 1,25D. Osteoclast formation from either mouse RAW264.7 cells or human PBMCs in the presence of physiological concentrations of 25D resulted in significant up-regulation of the key osteoclast transcription factor, nuclear factor of activated T cells-c1 in PBMCs and a number of key osteoclast marker genes in both models. The expression of the osteoblast coupling factor, ephrin-b2, was also increased in the presence of 25D. Levels of CYP27B1 and nuclear factor of activated T cells-1 mRNA correlated during osteoclastogenesis and also in a cohort of human bone samples. CYP27B1 short-hairpin RNA knockdown in RAW264.7 cells decreased their osteoclastogenic potential. 25D dose dependently reduced the resorptive capacity of PBMC-derived osteoclasts without compromising cell viability. 25D also reduced resorption by RAW264.7- and giant cell tumor-derived osteoclasts. Conversely, osteoclasts formed from vitamin D receptor-null mouse splenocytes had increased resorptive activity compared with wild-type cells. We conclude that 25D metabolism is an important intrinsic mechanism for optimizing osteoclast differentiation, ameliorating osteoclast activity, and potentially promoting the coupling of bone resorption to formation.


Journal of Bone and Mineral Research | 2013

Sclerostin Regulates Release of Bone Mineral by Osteocytes by Induction of Carbonic Anhydrase 2

Masakazu Kogawa; Asiri R. Wijenayaka; Renee T. Ormsby; Gethin P. Thomas; Paul H. Anderson; Lynda F. Bonewald; David M. Findlay; Gerald J. Atkins

The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF‐κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL‐mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin‐stimulated mineral dissolution by human primary osteocyte‐like cells (hOCy) and mouse MLO‐Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate‐resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO‐Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co‐presence of the carbonic anhydrase inhibitor, acetozolamide. Car2‐siRNA knockdown in MLO‐Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO‐Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co‐addition of acetozolamide. These findings suggest a new role for sclerostin in the regulation of perilacunar mineral by osteocytes.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

The metabolism of 25-(OH)vitamin D3 by osteoclasts and their precursors regulates the differentiation of osteoclasts.

Masakazu Kogawa; Paul H. Anderson; David M. Findlay; Howard A. Morris; Gerald J. Atkins

Current evidence suggests that levels of 25-(OH)vitamin D3 (25D), rather than 1alpha,25-(OH)2vitamin D3 (1,25D), directly affect bone mineralization and that the skeleton is a site of extra-renal synthesis of 1,25D. Since cells of the monocyte lineage can also metabolise 25D, it is possible that osteoclasts participate in local production of, and the response to, 1,25D. In this study, we investigated the effects of vitamin D metabolism on osteoclastogenesis using both the murine RAW 264.7 cell line and the human peripheral blood mononuclear cell (PBMC) models. PBMC-derived osteoclasts expressed cytoplasmic cyp27b1 and nuclear vdr proteins. PBMC expressed CYP27B1 mRNA, levels of which increased during RANKL induced differentiation into osteoclasts in both cell types. While 1,25D elicited a robust CYP24 transcriptional response in PBMC, the response to 25D was approximately 100-fold less at the concentrations used. Using media devoid of pre-existing vitamin D metabolites, we found that 25D was metabolised by RAW 264.7 cells to 1,25D and resulted in significant elevation in the numbers of TRAP-positive, multinucleated osteoclasts when present in the cultures for the first 3-5 days. These results suggest that vitamin D metabolism by osteoclast lineage cells is an important regulator of osteoclast formation.


Molecular and Cellular Endocrinology | 2015

Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli

Nobuaki Ito; Asiri R. Wijenayaka; Matthew Prideaux; Masakazu Kogawa; Renee T. Ormsby; Andreas Evdokiou; Lynda F. Bonewald; David M. Findlay; Gerald J. Atkins

Fibroblast growth factor-23 (FGF23), produced by osteocytes, is the key physiological regulator of phosphate homeostasis. Sepsis patients often experience transient hypophosphataemia, suggesting the regulation of FGF23 levels by pro-inflammatory factors. Here, we used the osteocyte-like cell line IDG-SW3 to investigate the effect of pro-inflammatory stimuli on FGF23 production. In differentiated IDG-SW3 cultures, basal Fgf23 mRNA was dose-dependently up-regulated by pro-inflammatory cytokines TNF, IL-1β and TWEAK, and bacterial LPS. Similar effects were observed in human bone samples. TNF- and IL-1β-induced Fgf23 expression was NF-κB-dependent. Conversely, mRNA encoding negative regulators of FGF23, Phex, Dmp1 and Enpp1, were suppressed by TNF, IL-1β, TWEAK and LPS, independent of NF-κβ signalling. Galnt3, the protein product of which protects intact FGF23 protein from furin/furin-like proprotein convertase cleavage, increased in response to these treatments. C-terminal FGF23 and intact FGF23 protein levels also increased, the latter only in the presence of Furin inhibitors, suggesting that enzymatic cleavage exerts critical control of active FGF23 secretion by osteocytes. Our results demonstrate in principle that pro-inflammatory stimuli are capable of increasing osteocyte secretion of FGF23, which may contribute to hypophosphataemia during sepsis and possibly other inflammatory conditions.


Journal of Bone and Mineral Metabolism | 2009

The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions

Cristina Vincent; Masakazu Kogawa; David M. Findlay; Gerald J. Atkins

Osteoclasts are the unique cell type capable of resorbing bone. The discovery of the TNF-ligand family member, RANKL, has allowed more reliable study of these important cells. The mouse monocytic cell line, RAW 264.7, has been shown to readily differentiate into osteoclasts upon exposure to recombinant RANKL. Unlike primary osteoclast precursors, there is no requirement for the addition of macrophage colony stimulating factor (M-CSF). However, to date, their differentiation has always been studied in the context of added foetal calf serum (FCS). FCS is a complex and largely undefined mixture of growth factors and matrix proteins, and varies between batches. For this reason, osteoclastogenesis would ideally be studied in the context of a defined, serum-free medium. RAW 264.7 cells were cultured in serum-replete α-MEM or serum-deprived medium (SDM) shown previously to support the growth of human osteoclasts in a co-culture with normal osteoblasts. In SDM, in the presence of recombinant RANKL, RAW 264.7 cells readily differentiated into tartrate resistant acid phosphatase (TRAP) positive multinucleated osteoclast-like cells, a process that was enhanced with the addition of 1α,25-dihydroxyvitamin D3 (1,25D). While the osteoclasts grown in SDM were smaller in size compared with those derived in serum-replete media, their resorptive capacity was significantly increased as indicated by a twofold increase in average resorption pit size. In conclusion, we describe a defined model for studying osteoclast differentiation and activity in the absence of serum, which will be ideal for studying the role of agonistic and antagonistic molecules in this process.


Molecular and Cellular Endocrinology | 2011

Vitamin D metabolism within bone cells: Effects on bone structure and strength

Paul H. Anderson; Gerald J. Atkins; Andrew G. Turner; Masakazu Kogawa; David M. Findlay; Howard A. Morris

The endocrine activity of 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)) contributes to maintaining plasma calcium and phosphate homeostasis through actions on the intestine, kidney and bone. A significant body of evidence has been published over the last 10 years indicating that all major bone cells have the capacity to metabolise 25-hydroxyvitamin D (25(OH)D(3)) to 1,25(OH)(2)D(3), which in turn exerts autocrine/paracrine actions to regulate bone cell proliferation and maturation as well as bone mineralisation and resorption. In vivo and in vitro studies indicate that these autocrine/paracrine activities of 1,25(OH)(2)D(3) in bone tissue contribute to maintaining bone mineral homeostasis and enhancing skeletal health.


Journal of Biological Chemistry | 2013

The Paired-box Homeodomain Transcription Factor Pax6 Binds to the Upstream Region of the TRAP Gene Promoter and Suppresses Receptor Activator of NF-κB Ligand (RANKL)-induced Osteoclast Differentiation

Masakazu Kogawa; Koji Hisatake; Gerald J. Atkins; David M. Findlay; Yuichiro Enoki; Tsuyoshi Sato; Peter C. Gray; Yukiko Kanesaki-Yatsuka; Paul H. Anderson; Seiki Wada; Naoki Kato; Aya Fukuda; Shigehiro Katayama; Masafumi Tsujimoto; Tetsuya Yoda; Tatsuo Suda; Yasushi Okazaki; Masahito Matsumoto

Background: Negative regulation of osteoclast differentiation is critical for suppression of pathological bone destruction. Results: Pax6 is induced by RANKL in osteoclasts and attenuates osteoclast differentiation via blocking TRAP gene expression. Conclusion: Pax6 functions together with its co-receptor to suppress TRAP gene expression and osteoclastogenesis. Significance: This study provides a new aspect for investigating the molecular targets linked to physiological bone resorption. Osteoclast formation is regulated by balancing between the receptor activator of nuclear factor-κB ligand (RANKL) expressed in osteoblasts and extracellular negative regulatory cytokines such as interferon-γ (IFN-γ) and interferon-β (IFN-β), which can suppress excessive bone destruction. However, relatively little is known about intrinsic negative regulatory factors in RANKL-mediated osteoclast differentiation. Here, we show the paired-box homeodomain transcription factor Pax6 acts as a negative regulator of RANKL-mediated osteoclast differentiation. Electrophoretic mobility shift and reporter assays found that Pax6 binds endogenously to the proximal region of the tartrate acid phosphatase (TRAP) gene promoter and suppresses nuclear factor of activated T cells c1 (NFATc1)-induced TRAP gene expression. Introduction of Pax6 retrovirally into bone marrow macrophages attenuates RANKL-induced osteoclast formation. Moreover, we found that the Groucho family member co-repressor Grg6 contributes to Pax6-mediated suppression of the TRAP gene expression induced by NFATc1. These results suggest that Pax6 interferes with RANKL-mediated osteoclast differentiation together with Grg6. Our results demonstrate that the Pax6 pathway constitutes a new aspect of the negative regulatory circuit of RANKL-RANK signaling in osteoclastogenesis and that the augmentation of Pax6 might therefore represent a novel target to block pathological bone resorption.


Journal of Tissue Engineering and Regenerative Medicine | 2017

Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells: 3D Printed Titanium Implants with Dual Micro- and Nano-Scale Topography

Karan Gulati; Matthew Prideaux; Masakazu Kogawa; Luis Lima-Marques; Gerald J. Atkins; David M. Findlay; Dusan Losic

The success of implantation of materials into bone is governed by effective osseointegration, requiring biocompatibility of the material and the attachment and differentiation of osteoblastic cells. To enhance cellular function in response to the implant surface, micro‐ and nano‐scale topography have been suggested as essential. In this study, we present bone implants based on 3D–printed titanium alloy (Ti6Al4V), with a unique dual topography composed of micron‐sized spherical particles and vertically aligned titania nanotubes. The implants were prepared by combination of 3D–printing and anodization processes, which are scalable, simple and cost‐effective. The osseointegration properties of fabricated implants, examined using human osteoblasts, showed enhanced adhesion of osteoblasts compared with titanium materials commonly used as orthopaedic implants. Gene expression studies at early (day 7) and late (day 21) stages of culture were consistent with the Ti substrates inducing an osteoblast phenotype conducive to effective osseointegration. These implants with the unique combination of micro‐ and nano‐scale topography are proposed as the new generation of multi‐functional bone implants, suitable for addressing many orthopaedic challenges, including implant rejection, poor osseointegration, inflammation, drug delivery and bone healing. Copyright

Collaboration


Dive into the Masakazu Kogawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul H. Anderson

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Howard A. Morris

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dusan Losic

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Turner

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge