Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Maschmann is active.

Publication


Featured researches published by Matthew R. Maschmann.


Nanotechnology | 2006

Effects of a carbon nanotube layer on electrical contact resistance between copper substrates

Myounggu Park; Baratunde A. Cola; Thomas Siegmund; Jun Xu; Matthew R. Maschmann; Timothy S. Fisher; Hyonny Kim

Reduction of contact resistance is demonstrated at Cu–Cu interfaces using a multiwalled carbon nanotube (MWCNT) layer as an electrically conductive interfacial material. The MWCNTs are grown on a copper substrate using plasma enhanced chemical vapour deposition (PECVD) with nickel as the catalyst material, and methane and hydrogen as feed gases. The MWCNTs showed random growth directions and had a bamboo-like structure. Contact resistance and reaction force were measured for a bare Cu–Cu interface and a Cu–MWCNT–Cu interface as a function of probe position. For an apparent contact area of 0.31 mm 2 ,a n80% reduction in contact resistance was observed when the MWCNT layer was used. Resistance decreased with increasing contact force, thereby making it possible to use this arrangement as a small-scale force sensor. Also, the Cu–MWCNT–Cu interface was roughly two times stiffer than the bare Cu–Cu interface. Contact area enlargement and van der Waals interactions are identified as important contributors to the contact resistance reduction and stiffness increase. A model based on compaction of the MWCNT layer is presented and found to be capable of predicting resistance change over the range of measured force. (Some figures in this article are in colour only in the electronic version)


Nanotechnology | 2006

Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates

Matthew R. Maschmann; Aaron D. Franklin; Placidus B. Amama; Dmitri N. Zakharov; Eric A. Stach; T. Sands; Timothy S. Fisher

Vertical single-walled and double-walled carbon nanotube (SWNT and DWNT) arrays have been grown using a catalyst embedded within the pore walls of a porous anodic alumina (PAA) template. The initial film structure consisted of a SiOx adhesion layer, a Ti layer, a bottom Al layer, a Fe layer, and a top Al layer deposited on a Si wafer. The Al and Fe layers were subsequently anodized to create a vertically oriented pore structure through the film stack. CNTs were synthesized from the catalyst layer by plasma-enhanced chemical vapour deposition (PECVD). The resulting structure is expected to form the basis for development of vertically oriented CNT-based electronics and sensors.


ACS Applied Materials & Interfaces | 2011

In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation

Matthew R. Maschmann; Qiuhong Zhang; Robert Wheeler; Feng Du; Liming Dai; Jeffery W. Baur

Quantitative nanoindentation of nominally 7.5 and 600 μm tall vertically aligned carbon nanotube (VACNT) arrays is observed in situ within an SEM chamber. The 7.5 μm array consists of highly aligned and weakly interacting CNTs and deflects similarly to classically defined cylindrical columns, with deformation geometry and critical buckling force well estimated using the Euler-Bernoulli theory. The 600 μm array has a highly entangled foam-like morphology and exhibits sequential buckle formation upon loading, with a buckle first forming near the array bottom at approximately 2% strain, followed by accumulating coordinated buckling at the top surface at strains exceeding 5%.


Advanced Materials | 2014

Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.

Matthew R. Maschmann; Gregory J. Ehlert; Benjamin T. Dickinson; David M. Phillips; Cody W. Ray; Greg W. Reich; Jeffery W. Baur

Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.


Journal of Vacuum Science & Technology B | 2007

In-place fabrication of nanowire electrode arrays for vertical nanoelectronics on Si substrates

Aaron D. Franklin; Matthew R. Maschmann; Manuel DaSilva; David B. Janes; Timothy S. Fisher; T. Sands

Vertical arrays of Pd nanowire electrodes with controllable and reproducible diameters and lengths are fabricated using a porous anodic alumina (PAA) template supported on a metallized Si substrate. The process described here employs a hydrogen plasma to penetrate the alumina pore barrier oxide prior to electrodeposition, enabling direct electrical contact with the back electrode metallization, thereby eliminating the need for electrochemical processing with high current or voltage pulsing that can lead to delamination or voiding. Electrical characteristics reveal Ohmic contact between the Pd nanowires and the underlying Ti conductive layer for samples with a range of pore diameters from 30to130nm. This process enables both the fabrication of vertical nanowire arrays on prefunctionalized substrates, as well as the in situ fabrication of contacts to semiconductor nanodevices using a thin-film nanowire array. The hydrogen plasma step is particularly well suited to the fabrication of carbon nanotube arrays i...


Chemical Communications | 2006

Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition

Placidus B. Amama; Oluwaseyi Ogebule; Matthew R. Maschmann; T. Sands; Timothy S. Fisher

Using a shielded growth approach and N2-annealed, nearly monodispersed Fe2O3 nanoparticles synthesized by interdendritic stabilization of Fe3+ species within fourth-generation poly(amidoamine) dendrimers, carbon nanotubes and nanofibers were successfully grown at low substrate temperatures (200-400 degrees C) by microwave plasma-enhanced chemical vapor deposition.


Smart Materials and Structures | 2012

Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

Matthew R. Maschmann; Ben Dickinson; Gregory J. Ehlert; Jeffery W. Baur

The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0–1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.


ACS Applied Materials & Interfaces | 2017

Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium

Heng Deng; Yuan Dong; Jheng-Wun Su; Cheng Zhang; Yunchao Xie; Chi Zhang; Matthew R. Maschmann; Yuyi Lin; Jian Lin

Responsive materials with functions of forming three-dimensional (3D) origami and/or kirigami structures have a broad range of applications in bioelectronics, metamaterials, microrobotics, and microelectromechanical (MEMS) systems. To realize such functions, building blocks of actuating components usually possess localized inhomogeneity so that they respond differently to external stimuli. Previous fabrication strategies lie in localizing nonswellable or less-swellable guest components in their swellable host polymers to reduce swelling ability. Herein, inspired by ice plant seed capsules, we report an opposite strategy of implanting swellable guest medium inside nonswellable host polymers to locally enhance the swelling inhomogeneity. Specifically, we adopted a skinning effect induced surface polymerization combined with direct laser writing to control gradient of swellable cyclopentanone (CP) in both vertical and lateral directions of the nonswellable SU-8. For the first time, the laser direct writing was used as a novel strategy for patterning programmable polymer gel films. Upon stimulation of organic solvents, the dual-gradient gel films designed by origami or kirigami principles exhibit reversible 3D shape transformation. Molecular dynamics (MD) simulation illustrates that CP greatly enhances diffusion rates of stimulus solvent molecules in the SU-8 matrix, which offers the driving force for the programmable response. Furthermore, this bioinspired strategy offers unique capabilities in fabricating responsive devices such as a soft gripper and a locomotive robot, paving new routes to many other responsive polymers.


Proceedings of SPIE | 2011

Electromechanical behavior of aligned carbon nanotube arrays for bio-inspired fluid flow sensors

Gregory J. Ehlert; Matthew R. Maschmann; Jeffery W. Baur

Hierarchical carbon fibers show potential as a bio-inspired fluid flow sensor. The sensor is inspired from bat wings, which have thousands of micro-scale hairs that are deflected due to the flow and are believed to feedback flow information through force sensitive cells. Radially aligned carbon nanotube arrays on carbon fiber could function as the transducer in a similar device by decreasing resistance with the application of compressive strain. The bio-inspired flow sensor is first modeled to determine the compliance of the fiber and strains applied to the carbon nanotube arrays. Vertically aligned carbon nanotube arrays are then prepared on planar conductive substrates through transfer from insulating Si wafers; which simplifies the analysis of the mechanical properties of the material. The electromechanical material properties are measured by a modified dynamic mechanical analyzer. Results are presented along with recommendations for the next phase of electromechanical property evaluation.


Journal of Heat Transfer-transactions of The Asme | 2016

Combined Microstructure and Heat Transfer Modeling of Carbon Nanotube Thermal Interface Materials

Sridhar Sadasivam; Stephen L. Hodson; Matthew R. Maschmann; Timothy S. Fisher

A microstructure-sensitive thermomechanical simulation framework is developed to predict the mechanical and heat transfer properties of vertically aligned CNT (VACNT) arrays used as thermal interface materials (TIMs). The model addresses the gap between atomistic thermal transport simulations of individual CNTs (carbon nanotubes) and experimental measurements of thermal resistance of CNT arrays at mesoscopic length scales. Energy minimization is performed using a bead–spring coarse-grain model to obtain the microstructure of the CNT array as a function of the applied load. The microstructures obtained from the coarse-grain simulations are used as inputs to a finite volume solver that solves one-dimensional and three-dimensional Fourier heat conduction in the CNTs and filler matrix, respectively. Predictions from the finite volume solver are fitted to experimental data on the total thermal resistance of CNT arrays to obtain an individual CNT thermal conductivity of 12 W m−1 K−1 and CNT–substrate contact conductance of 7 × 107 W m−2 K−1. The results also indicate that the thermal resistance of the CNT array shows a weak dependence on the CNT–CNT contact resistance. Embedding the CNT array in wax is found to reduce the total thermal resistance of the array by almost 50%, and the pressure dependence of thermal resistance nearly vanishes when a matrix material is introduced. Detailed microstructural information such as the topology of CNT–substrate contacts and the pressure dependence of CNT–opposing substrate contact area are also reported.

Collaboration


Dive into the Matthew R. Maschmann's collaboration.

Top Co-Authors

Avatar

Jeffery W. Baur

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. John Hart

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge