Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Tucker is active.

Publication


Featured researches published by Matthew R. Tucker.


The Plant Cell | 2003

Sexual and Apomictic Reproduction in Hieracium subgenus Pilosella Are Closely Interrelated Developmental Pathways

Matthew R. Tucker; Ana-Claudia G. Araujo; Nicholas Paech; Valérie Hecht; Ed D. L. Schmidt; Jan-Bart Rossell; Sacco C. de Vries; Anna M. Koltunow

Seed formation in flowering plants requires meiosis of the megaspore mother cell (MMC) inside the ovule, selection of a megaspore that undergoes mitosis to form an embryo sac, and double fertilization to initiate embryo and endosperm formation. During apomixis, or asexual seed formation, in Hieracium ovules, a somatic aposporous initial (AI) cell divides to form a structurally variable aposporous embryo sac and embryo. This entire process, including endosperm development, is fertilization independent. Introduction of reproductive tissue marker genes into sexual and apomictic Hieracium showed that AI cells do not express a MMC marker. Spatial and temporal gene expression patterns of other introduced genes were conserved commencing with the first nuclear division of the AI cell in apomicts and the mitotic initiation of embryo sac formation in sexual plants. Conservation in expression patterns also occurred during embryo and endosperm development, indicating that sexuality and apomixis are interrelated pathways that share regulatory components. The induction of a modified sexual reproduction program in AI cells may enable the manifestation of apomixis in Hieracium.


PLOS Genetics | 2009

Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing

Allison C. Mallory; Annika Hinze; Matthew R. Tucker; Nicolas Bouché; Virginie Gasciolli; Taline Elmayan; Dominique Lauressergues; Vincent Jauvion; Hervé Vaucheret; Thomas Laux

The Arabidopsis ARGONAUTE1 (AGO1) and ZWILLE/PINHEAD/AGO10 (ZLL) proteins act in the miRNA and siRNA pathways and are essential for multiple processes in development. Here, we analyze what determines common and specific function of both proteins. Analysis of ago1 mutants with partially compromised AGO1 activity revealed that loss of ZLL function re-establishes both siRNA and miRNA pathways for a subset of AGO1 target genes. Loss of ZLL function in ago1 mutants led to increased AGO1 protein levels, whereas AGO1 mRNA levels were unchanged, implicating ZLL as a negative regulator of AGO1 at the protein level. Since ZLL, unlike AGO1, is not subjected to small RNA-mediated repression itself, this cross regulation has the potential to adjust RNA silencing activity independent of feedback dynamics. Although AGO1 is expressed in a broader pattern than ZLL, expression of AGO1 from the ZLL promoter restored transgene PTGS and most developmental defects of ago1, whereas ZLL rescued only a few AGO1 functions when expressed from the AGO1 promoter, suggesting that the specific functions of AGO1 and ZLL are mainly determined by their protein sequence. Protein domain swapping experiments revealed that the PAZ domain, which in AGO1 is involved in binding small RNAs, is interchangeable between both proteins, suggesting that this common small RNA-binding domain contributes to redundant functions. By contrast, the conserved MID and PIWI domains, which are involved in 5′-end small RNA selectivity and mRNA cleavage, and the non-conserved N-terminal domain, to which no function has been assigned, provide specificity to AGO1 and ZLL protein function.


Development | 2008

Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo

Matthew R. Tucker; Annika Hinze; Elise J. Tucker; Shinobu Takada; Gerd Jürgens; Thomas Laux

Stem cells are maintained in an undifferentiated state by signals from their microenvironment, the stem cell niche. Despite its central role for organogenesis throughout the plants life, little is known about how niche development is regulated in the Arabidopsis embryo. Here we show that, in the absence of functional ZWILLE (ZLL), which is a member of the ARGONAUTE (AGO) family, stem cell-specific expression of the signal peptide gene CLAVATA3 (CLV3) is not maintained despite increased levels of the homeodomain transcription factor WUSCHEL (WUS), which is expressed in the organising centre (OC) of the niche and normally promotes stem cell identity. Tissue-specific expression indicates that ZLL acts to maintain the stem cells from the neighbouring vascular primordium, providing direct evidence for a non-cell-autonomous mechanism. Furthermore, mutant and marker gene analyses suggest that during shoot meristem formation, ZLL functions in a similar manner but in a sequential order with its close homologue AGO1, which mediates RNA interference. Thus, WUS-dependent OC signalling to the stem cells is promoted by AGO1 and subsequently maintained by a provascular ZLL-dependent signalling pathway.


Development | 2012

Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis

Matthew R. Tucker; Takashi Okada; Yingkao Hu; Andrew Scholefield; Jennifer M. Taylor; Anna M. Koltunow

Female gamete development in Arabidopsis ovules comprises two phases. During megasporogenesis, a somatic ovule cell differentiates into a megaspore mother cell and undergoes meiosis to produce four haploid megaspores, three of which degrade. The surviving functional megaspore participates in megagametogenesis, undergoing syncytial mitosis and cellular differentiation to produce a multicellular female gametophyte containing the egg and central cell, progenitors of the embryo and endosperm of the seed. The transition between megasporogenesis and megagametogenesis is poorly characterised, partly owing to the inaccessibility of reproductive cells within the ovule. Here, laser capture microdissection was used to identify genes expressed in and/or around developing megaspores during the transition to megagametogenesis. ARGONAUTE5 (AGO5), a putative effector of small RNA (sRNA) silencing pathways, was found to be expressed around reproductive cells during megasporogenesis, and a novel semi-dominant ago5-4 insertion allele showed defects in the initiation of megagametogenesis. Expression of a viral RNAi suppressor, P1/Hc-Pro, driven by the WUSCHEL and AGO5 promoters in somatic cells flanking the megaspores resulted in a similar phenotype. This indicates that sRNA-dependent pathways acting in somatic ovule tissues promote the initiation of megagametogenesis in the functional megaspore. Notably, these pathways are independent of AGO9, which functions in somatic epidermal ovule cells to inhibit the formation of multiple megaspore-like cells. Therefore, one somatic sRNA pathway involving AGO9 restricts reproductive development to the functional megaspore and a second pathway, inhibited by ago5-4 and P1/Hc-Pro, promotes megagametogenesis.


Planta | 2001

Dynamics of callose deposition and β-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium

Matthew R. Tucker; Nicholas A. Paech; Michiel T. M. Willemse; Anna M. Koltunow

Abstract. Callose accumulates in the walls of cells undergoing megasporogenesis during embryo sac formation in angiosperm ovules. Deficiencies in callose deposition have been observed in apomictic plants and causal linkages between altered callose deposition and apomictic initiation proposed. In apomictic Hieracium, embryo sacs initiate by sexual and apomictic processes within an ovule, but sexual development terminates in successful apomicts. Callose deposition and the events that lead to sexual termination were examined in different Hieracium apomicts that form initials pre- and post-meiosis. In apomictic plants, callose was not detected in initial cell walls and deficiencies in callose deposition were not observed in cells undergoing megasporogenesis. Multiple initial formation pre-meiosis resulted in physical distortion of cells undergoing megasporogenesis, persistence of callose and termination of the sexual pathway. In apomictic plants, callose persistence did not correlate with altered spatial or temporal expression of a β-1,3-glucanase gene (HpGluc) encoding a putative callose-degrading enzyme. Expression analysis indicated HpGluc might function during ovule growth and embryo sac expansion in addition to callose dissolution in sexual and apomictic plants. Initial formation pre-meiosis might therefore limit the access of HpGluc protein to callose substrate while the expansion of aposporous embryo sacs is promoted. Callose deposition and dissolution during megasporogenesis were unaffected when initials formed post-meiosis, indicating other events cause sexual termination. Apomixis in Hieracium is not caused by changes in callose distribution but by events that lead to initial cell formation. The timing of initial formation can in turn influence callose dissolution.


The Plant Cell | 2008

Sexual and Apomictic Seed Formation in Hieracium Requires the Plant Polycomb-Group Gene FERTILIZATION INDEPENDENT ENDOSPERM

Julio C.M. Rodrigues; Matthew R. Tucker; Susan D. Johnson; Maria Hrmova; Anna M. Koltunow

A Polycomb-Group (PcG) complex, FERTILIZATION INDEPENDENT SEED (FIS), represses endosperm development in Arabidopsis thaliana until fertilization occurs. The Hieracium genus contains apomictic species that form viable seeds asexually. To investigate FIS function during apomictic seed formation, FERTILIZATION INDEPENDENT ENDOSPERM (FIE), encoding a WD-repeat member of the FIS complex, was isolated and downregulated in sexual and apomictic Hieracium species. General downregulation led to defects in leaf and seed development, consistent with a role in developmental transitions and cell fate. PcG-like activity of Hieracium FIE was also supported by its interaction in vitro with the Arabidopsis CURLY LEAF PcG protein. By contrast, specific downregulation of FIE in developing seeds of sexual Hieracium did not result in autonomous endosperm proliferation but led to seed abortion after cross-pollination. Furthermore, in apomictic Hieracium, specific FIE downregulation inhibited autonomous embryo and endosperm initiation, and most autonomous seeds displayed defective embryo and endosperm growth. Therefore, FIE is required for both apomictic and fertilization-induced seed initiation in Hieracium. Since Hieracium FIE failed to interact with FIS class proteins in vitro, its partner proteins might differ from those in the FIS complex of Arabidopsis. These differences in protein interaction were attributed to structural modifications predicted from comparisons of Arabidopsis and Hieracium FIE molecular models.


Frontiers in Plant Science | 2016

The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions.

Kelly Houston; Matthew R. Tucker; Jamil Chowdhury; Neil J. Shirley; Alan Little

The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them.


Functional Plant Biology | 2009

Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships

Matthew R. Tucker; Anna M. Koltunow

Reproduction in the flowering plants (angiosperms) is a dynamic process that relies upon the formation of inflorescences, flowers and eventually seed. Most angiosperms reproduce sexually by generating gametes via meiosis that fuse during fertilisation to initiate embryo and seed development, thereby perpetuating the processes of adaptation and evolution. Despite this, sex is not a ubiquitous reproductive strategy. Some angiosperms have evolved an alternate form of reproduction termed apomixis, which avoids meiosis during gamete formation and leads to the production of embryos without paternal contribution. Therefore, apomixis results in the production of clonal progeny through seed. The molecular nature and evolutionary origin of apomixis remain unclear, but recent studies suggest that apomixis evolved from the same molecular framework supporting sex. In this review, we consider physical and molecular relationships between the two pathways, with a particular focus on the initial stages of female reproduction where apomixis deviates from the sexual pathway. We also consider theories that explain the origin of apomictic processes from sexual progenitors. Detailed characterisation of the relationship between sex and apomixis in an evolutionary and developmental sense is an important step towards understanding how apomixis might be successfully integrated into agriculturally important, but currently sexual crops.


BMC Plant Biology | 2012

Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling.

Tobias Würschum; Matthew R. Tucker; Jochen C. Reif; Hans Peter Maurer

BackgroundDoubled haploid production is a key technology in triticale research and breeding. A critical component of this method depends on chromosome doubling, which is traditionally achieved by in vivo treatment of seedlings with colchicine.ResultsIn this study we investigated the applicability of an in vitro approach for chromosome doubling based on microspore culture. Our results show a pronounced increase in the proportion of doubled haploid triticale plants compared to the spontaneous doubling rate, but also compared to the doubling obtained by the standard in vivo approach. In addition, the frequency of plants surviving from culture medium to maturity is also much higher for the in vitro approach. Colchicine concentrations of 1 mM for 24 h or 0.3 mM applied for 48 or 72 h during the first hours of microspore culture performed best.ConclusionsOur results suggest that for triticale, in vitro chromosome doubling is a promising alternative to the in vivo approach.


Journal of Experimental Botany | 2013

Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis

Kay Trafford; Pauline Haleux; Marilyn Henderson; Mary L. Parker; Neil J. Shirley; Matthew R. Tucker; Geoffrey B. Fincher; Rachel A. Burton

To explain the low levels of starch, high levels of (1,3;1,4)-β-glucan, and thick cell walls in grains of Brachypodium distachyon L. relative to those in other Pooideae, aspects of grain development were compared between B. distachyon and barley (Hordeum vulgare L.). Cell proliferation, cell expansion, and endoreduplication were reduced in B. distachyon relative to barley and, consistent with these changes, transcriptional downregulation of the cell-cycle genes CDKB1 and cyclin A3 was observed. Similarly, reduced transcription of starch synthase I and starch-branching enzyme I was observed as well as reduced activity of starch synthase and ADP-glucose pyrophosphorylase, which are consistent with the lowered starch content in B. distachyon grains. No change was detected in transcription of the major gene involved in (1,3;1,4)-β-glucan synthesis, cellulose synthase-like F6. These results suggest that, while low starch content results from a reduced capacity for starch synthesis, the unusually thick cell walls in B. distachyon endosperm probably result from continuing (1,3;1,4)-β-glucan deposition in endosperm cells that fail to expand. This raises the possibility that endosperm expansion is linked to starch deposition.

Collaboration


Dive into the Matthew R. Tucker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna M. Koltunow

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Hahn

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenxin Liu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Thomas Laux

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Susan D. Johnson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge