Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Kern is active.

Publication


Featured researches published by Matthias Kern.


American Journal of Physiology-endocrinology and Metabolism | 2010

Insulin-sensitive obesity

Nora Klöting; Mathias Fasshauer; Arne Dietrich; Peter Kovacs; Michael R. Schön; Matthias Kern; Michael Stumvoll; Matthias Blüher

The association between obesity and impaired insulin sensitivity has long been recognized, although a subgroup of obese individuals seems to be protected from insulin resistance. In this study, we systematically studied differences in adipose tissue biology between insulin-sensitive (IS) and insulin-resistant (IR) individuals with morbid obesity. On the basis of glucose infusion rate during euglycemic hyperinsulinemic clamps, 60 individuals with a BMI of 45 +/- 1.3 kg/m(2) were divided into an IS and IR group matched for age, sex, and body fat prior to elective surgery. We measured fat distribution, circulating adipokines, and parameters of inflammation, glucose, and lipid metabolism and characterized adipose tissue morphology, function, and mRNA expression in abdominal subcutaneous (sc) and omental fat. IS compared with IR obese individuals have significantly lower visceral fat area (138 +/- 27 vs. 316 +/- 91 cm(2)), number of macrophages in omental adipose tissue (4.9 +/- 0.8 vs. 13.2 +/- 1.4%), mean omental adipocyte size (528 +/- 76 vs. 715 +/- 81 pl), circulating C-reactive protein, progranulin, chemerin, and retinol-binding protein-4 (all P values <0.05), and higher serum adiponectin (6.9 +/- 3.4 vs. 3.4 +/- 1.7 ng/ml) and omental adipocyte insulin sensitivity (all P values <0.01). The strongest predictors of insulin sensitivity by far were macrophage infiltration together with circulating adiponectin (r(2) = 0.98, P < 0.0001). In conclusion, independently of total body fat mass, increased visceral fat accumulation and adipose tissue dysfunction are associated with IR obesity. This suggests that mechanisms beyond a positive caloric balance such as inflammation and adipokine release determine the pathological metabolic consequences in patients with obesity.


Metabolism-clinical and Experimental | 2012

Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity

Rima Chakaroun; Matthias Raschpichler; Nora Klöting; Andreas Oberbach; Gesine Flehmig; Matthias Kern; Michael R. Schön; Edward Shang; Tobias Lohmann; Miriam Dreßler; Mathias Fasshauer; Michael Stumvoll; Matthias Blüher

Chemerin is a chemoattractant adipokine that regulates adipogenesis and may induce insulin resistance. Chemerin serum concentrations are elevated in obese, insulin-resistant, and inflammatory states in vivo. Here we investigate the role of omental (OM) and subcutaneous (SC) adipose tissue chemerin and CMKLR1 messenger RNA (mRNA) expression in human obesity. In addition, we test the hypothesis that changes in chemerin serum concentrations are primarily associated with reduced body fat mass in the context of 3 weight loss intervention studies. Chemerin serum concentration was measured in 740 individuals in a cross-sectional (n = 629) study including a subgroup (n = 161) for which OM and SC chemerin mRNA expression has been analyzed as well as in 3 interventions including 12 weeks of exercise (n = 60), 6 months of calorie-restricted diet (n = 19) studies, and 12 months after bariatric surgery (n = 32). Chemerin mRNA is significantly higher expressed in adipose tissue of patients with type 2 diabetes mellitus and correlates with circulating chemerin, body mass index (BMI), percentage body fat, C-reactive protein, homeostasis model assessment of insulin resistance, and glucose infusion rate in euglycemic-hyperinsulinemic clamps. CMKLR1 mRNA expression was not significantly different between the 2 fat depots. Obesity surgery-induced weight loss causes a significant reduction on both OM and SC chemerin expression. All interventions led to significantly reduced chemerin serum concentrations. Decreased chemerin serum concentrations significantly correlate with improved glucose infusion rate and reduced C-reactive protein levels independently of changes in BMI. Insulin resistance and inflammation are BMI-independent predictors of elevated chemerin serum concentrations. Reduced chemerin expression and serum concentration may contribute to improved insulin sensitivity and subclinical inflammation beyond significant weight loss.


Nature Medicine | 2014

The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis

Guo Xiao Wang; Xu Yun Zhao; Zhuo Xian Meng; Matthias Kern; Arne Dietrich; Zhimin Chen; Zoharit Cozacov; Dequan Zhou; Adewole L. Okunade; Xiong Su; Siming Li; Matthias Blüher; Jiandie D. Lin

Brown fat activates uncoupled respiration in response to cold temperature and contributes to systemic metabolic homeostasis. To date, the metabolic action of brown fat has been primarily attributed to its role in fuel oxidation and uncoupling protein 1 (UCP1)-mediated thermogenesis. Whether brown fat engages other tissues through secreted factors remains largely unexplored. Here we show that neuregulin 4 (Nrg4), a member of the epidermal growth factor (EGF) family of extracellular ligands, is highly expressed in adipose tissues, enriched in brown fat and markedly increased during brown adipocyte differentiation. Adipose tissue Nrg4 expression was reduced in rodent and human obesity. Gain- and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin resistance and hepatic steatosis through attenuating hepatic lipogenic signaling. Mechanistically, Nrg4 activates ErbB3 and ErbB4 signaling in hepatocytes and negatively regulates de novo lipogenesis mediated by LXR and SREBP1c in a cell-autonomous manner. These results establish Nrg4 as a brown fat–enriched endocrine factor with therapeutic potential for the treatment of obesity-associated disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD).


Cell | 2014

Adipsin Is an Adipokine that Improves β Cell Function in Diabetes

James C. Lo; Sanda Ljubicic; Barbara Leibiger; Matthias Kern; Ingo B. Leibiger; Tilo Moede; Molly E. Kelly; Diti Chatterjee Bhowmick; Incoronata Murano; Paul Cohen; Alexander S. Banks; Melin Khandekar; Arne Dietrich; Jeffrey S. Flier; Saverio Cinti; Matthias Blüher; Nika N. Danial; Per-Olof Berggren; Bruce M. Spiegelman

A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic β cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining β cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with β cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to β cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.


Diabetes | 2008

Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth

Nora Klöting; Linda Koch; Thomas Wunderlich; Matthias Kern; Karen Ruschke; Wilhelm Krone; Jens C. Brüning; Matthias Blüher

OBJECTIVE—IGF-1 and the IGF-1 receptor (IGF-1R) have been implicated in the regulation of adipocyte differentiation and lipid accumulation in vitro. RESEARCH DESIGN AND METHODS—To investigate the role of IGF-1 receptor in vivo, we have inactivated the Igf-1r gene in adipose tissue (IGF-1RaP2Cre mice) using conditional gene targeting strategies. RESULTS—Conditional IGF-1R inactivation resulted in increased adipose tissue mass with a predominantly increased lipid accumulation in epigonadal fat pads. However, insulin-stimulated glucose uptake into adipocytes was unaffected by the deletion of the IGF-1R. Surprisingly, IGF-1RaP2Cre mice exhibited markedly increased somatic growth in the presence of elevated IGF-1 serum concentrations, and IGF-1 mRNA expression was significantly increased in liver and adipose tissue. IGF-1 stimulation of wild-type adipocytes significantly decreased IGF-1 mRNA expression, whereas the opposite effect was observed in IGF-1R–deficient adipocytes. CONCLUSIONS—IGF-1R signaling in adipocytes does not appear to be crucial for the development and differentiation of adipose tissue in vivo, but we identified a negative IGF-1R–mediated feedback mechanism of IGF-1 on its own gene expression in adipocytes, indicating an unexpected role for adipose tissue IGF-1 signaling in the regulation of IGF-1 serum concentrations in control of somatic growth.


PLOS ONE | 2012

Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity.

Matthias Kern; Nora Klöting; Heiko G. Niessen; Leo Thomas; Detlef Stiller; Michael Mark; Thomas Klein; Matthias Blüher

Linagliptin (tradjenta™) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3–4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67–89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (–16.5% to –20.3%; P<0.01) or 30 mg/kg/day (–14.5% to –26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic–hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity.


Molecular and Cellular Endocrinology | 2015

Autophagy in adipose tissue of patients with obesity and type 2 diabetes.

Joanna Kosacka; Matthias Kern; Nora Klöting; S. Paeschke; A. Rudich; Y. Haim; Martin Gericke; Heike Serke; Michael Stumvoll; Ingo Bechmann; Marcin Nowicki; Matthias Blüher

BACKGROUND Pathophysiology of obesity is closely associated with enhanced autophagy in adipose tissue (AT). Autophagic process can promote survival or activate cell death. Therefore, we examine the occurrence of autophagy in AT of type 2 diabetes (T2D) patients in comparison to obese and lean individuals without diabetes. METHODOLOGY/PRINCIPAL FINDINGS Numerous autophagosomes accumulated within adipocytes were visualized by electron transmission microscopy and by immunofluorescence staining for autophagy marker LC3 in obese and T2D patients. Increased autophagy was demonstrated by higher LC3-II/LC3-I ratio, up-regulated expression of LC3 and Atg5 mRNA, along with decreased p62 and mTOR protein levels. Increased autophagy occurred together with AT inflammation. CONCLUSIONS Our data suggest fat depot-related differences in autophagy regulation. In subcutaneous AT, increased autophagy is accompanied by increased markers of apoptosis in patients with obesity independently of T2D. In contrast, in visceral AT only in T2D patients increased autophagy was related to higher markers of apoptosis.


Metabolism-clinical and Experimental | 2016

The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin.

Matthias Kern; Nora Klöting; Michael Mark; Eric Mayoux; Thomas Klein; Matthias Blüher

AIMS Combining different drug classes to improve glycemic control is one treatment strategy for type 2 diabetes. The effects on insulin sensitivity of long-term treatment with the sodium glucose co-transporter 2 (SGLT2) inhibitor empagliflozin alone or co-administered with the dipeptidyl peptidase-4 inhibitor linagliptin (both approved antidiabetes drugs) were investigated in mice using euglycemic-hyperinsulinemic clamps. MATERIALS AND METHODS db/db mice (n=15/group) were treated for 8weeks with 10mg/kg/day empagliflozin monotherapy, 10mg/kg/day empagliflozin plus 3mg/kg/day linagliptin combination therapy, or 3mg/kg/day linagliptin monotherapy. At the end of the study, euglycemic-hyperinsulinemic clamp studies were performed 4days after the last dose of treatment. RESULTS HbA1c and 2-hour fasting glucose concentrations were improved with empagliflozin monotherapy and combination therapy compared with vehicle and linagliptin monotherapy. During the clamp, glucose disposal rates increased and hepatic glucose production decreased with empagliflozin monotherapy and combination therapy compared with vehicle and linagliptin monotherapy. Glucose uptake in liver and kidney was higher with empagliflozin monotherapy and combination therapy compared with vehicle; glucose uptake into both muscle and adipose tissue was only affected by linagliptin treatment. Empagliflozin and combination therapy altered the expression of genes involved in the inflammatory response, fatty acid synthesis and oxidation. CONCLUSIONS These findings suggest that the insulin-sensitizing effects of SGLT2 inhibition contribute to improvements in glycemic control in insulin-resistant states.


Obesity | 2015

Circulating adipocyte fatty acid-binding protein induces insulin resistance in mice in vivo

Nora Klöting; Thomas Ebert; Matthias Kern; Annett Hoffmann; Kerstin Krause; Beate Jessnitzer; Ulrike Lossner; Ines Sommerer; Michael Stumvoll; Mathias Fasshauer

Circulating levels of the adipokine adipocyte fatty acid‐binding protein (AFABP) are increased in obesity. However, the influence of circulating AFABP on insulin sensitivity in vivo remains unclear.


PLOS ONE | 2012

COMP-Angiopoietin-1 Recovers Molecular Biomarkers of Neuropathy and Improves Vascularisation in Sciatic Nerve of ob/ob Mice

Joanna Kosacka; Marcin Nowicki; Nora Klöting; Matthias Kern; Michael Stumvoll; Ingo Bechmann; Heike Serke; Matthias Blüher

Background Leptin-deficient ob/ob mice are a model of type 2 diabetes induced peripheral neuropathy. Ob/ob mice exhibit obesity, insulin resistance, hyperglycaemia, and alterations of peripheral nerve fibres and endoneural microvessels. Here we test the hypothesis that cartilage oligomeric matrix protein (COMP)-Ang-1, a soluble and stabile form of Ang-1 which promotes angiogenesis and nerve growth, improves regeneration of nerve fibres and endoneural microvessels in ob/ob mice. Methods and Findings COMP-Ang-1 (100 ng/ml) or NaCl were intraperitoneally (i.p.) injected into male (N = 184), 3-month old, ob/ob or ob/+ mice for 7 and 21 days. We measured expression of Nf68, GAP43, Cx32, Cx26, Cx43, and TNFα in sciatic nerves using Western blot analysis. To investigate the inflammation in sciatic nerves, numbers of macrophages and T-cells were counted after immunofluorescence staining. In ultrathin section, number of myelinated/non-mylinated nerve fibers, g-ratio, the thickness of Schwann cell basal lamina and microvessel endothelium were investigated. Endoneural microvessels were reconstructed with intracardial FITC injection. Treatment with COMP-Ang-1 over 21 days significantly reduced fasting blood glucose and plasma cholesterol concentrations compared to saline treated ob/ob mice. In addition, COMP-Ang-1 treatment: 1) up-regulated expression of Nf68 and GAP43; 2) improved expression of gap junction proteins including connexin 32 and 26; 3) suppressed the expression of TNFα and Cx43 and 4) led to decreased macrophage and T-cell infiltration in sciatic nerve of ob/ob mice. The significant changes of sciatic nerve ultrastructure were not observed after 21-day long COMP-Ang-1 treatment. COMP-Ang-1 treated ob/ob mice displayed regeneration of small-diameter endoneural microvessels. Effects of COMP-Ang-1 corresponded to increased phosphorylation of Akt and p38 MAPK upon Tie-2 receptor. Conclusions COMP-Ang-1 recovers molecular biomarkers of neuropathy, promotes angiogenesis and suppresses inflammation in sciatic nerves of ob/ob mice suggesting COMP-Ang-1 as novel treatment option to improve morphologic and protein expression changes associated with diabetic neuropathy.

Collaboration


Dive into the Matthias Kern's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge