Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Oelze is active.

Publication


Featured researches published by Matthias Oelze.


Journal of Clinical Investigation | 2004

Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance

Karsten Sydow; Andreas Daiber; Matthias Oelze; Zhiqiang Chen; Michael August; Maria Wendt; Volker Ullrich; Alexander Mülsch; Eberhard Schulz; John F. Keaney; Jonathan S. Stamler; Thomas Münzel

Recent studies suggest that mitochondrial aldehyde dehydrogenase (ALDH-2) plays a central role in the process of nitroglycerin (glyceryl trinitrate, GTN) biotransformation in vivo and that its inhibition accounts for mechanism-based tolerance in vitro. The extent to which ALDH-2 contributes to GTN tolerance (impaired relaxation to GTN) and cross-tolerance (impaired endothelium-dependent relaxation) in vivo remain to be elucidated. Rats were treated for three days with GTN. Infusions were accompanied by decreases in vascular ALDH-2 activity, GTN biotransformation, and cGMP-dependent kinase (cGK-I) activity. Further, whereas in control vessels, multiple inhibitors and substrates of ALDH-2 reduced both GTN-stimulation of cGKI and GTN-induced vasodilation, these agents had little effect on tolerant vessels. A state of functional tolerance (in the GTN/cGMP pathway) was recapitulated in cultured endothelial cells by knocking down mitochondrial DNA (rho(0) cells). In addition, GTN increased the production of reactive oxygen species (ROS) by mitochondria, and these increases were associated with impaired relaxation to acetylcholine. Finally, antioxidants/reductants decreased mitochondrial ROS production and restored ALDH-2 activity. These observations suggest that nitrate tolerance is mediated, at least in significant part, by inhibition of vascular ALDH-2 and that mitochondrial ROS contribute to this inhibition. Thus, GTN tolerance may be viewed as a metabolic syndrome characterized by mitochondrial dysfunction.


Circulation Research | 2000

Vasodilator-Stimulated Phosphoprotein Serine 239 Phosphorylation as a Sensitive Monitor of Defective Nitric Oxide/cGMP Signaling and Endothelial Dysfunction

Matthias Oelze; Hanke Mollnau; Nina Hoffmann; Ascan Warnholtz; Martin Bodenschatz; Albert Smolenski; Ulrich Walter; Mikhail Skatchkov; Thomas Meinertz; Thomas Münzel

Studies with cGMP-dependent protein kinase I (cGK-I)-deficient human cells and mice demonstrated that cGK-I ablation completely disrupts the NO/cGMP pathway in vascular tissue, which indicates a key role of this protein kinase as a mediator of the NO/cGMP action. Analysis of the vasodilator-stimulated phosphoprotein phosphorylated at serine 239 (P-VASP) is a useful tool to monitor cGK-I activation in platelets and cultured endothelial and smooth muscle cells. Therefore, we investigated whether endothelial dysfunction and/or vascular NO bioavailability is reflected by decreased vessel wall P-VASP and whether improvement of endothelial dysfunction restores this P-VASP. Incubation of aortic tissue from New Zealand White Rabbits with the NOS inhibitor NG-nitro-l-arginine and endothelial removal strikingly reduced P-VASP. Oxidative stress induced by inhibition of CuZn superoxide dismutase increased superoxide and decreased P-VASP. Endothelial dysfunction in hyperlipidemic Watanabe rabbits (WHHL) was associated with increased vascular superoxide and with decreased P-VASP. Treatment of WHHL with AT1 receptor blockade improved endothelial dysfunction, reduced vascular superoxide, increased vascular NO bioavailability, and increased P-VASP. Therefore, the level of vessel P-VASP closely follows changes in endothelial function and vascular oxidative stress. P-VASP is suggested to represent a novel biochemical marker for monitoring the NO-stimulated sGC/cGK-I pathway and endothelial integrity in vascular tissue.


Circulation | 2011

Lysozyme M–Positive Monocytes Mediate Angiotensin II–Induced Arterial Hypertension and Vascular Dysfunction

Philip Wenzel; Maike Knorr; Sabine Kossmann; Jan Stratmann; Michael Hausding; Swenja Schuhmacher; Susanne Karbach; Melanie Schwenk; Nir Yogev; Eberhard Schulz; Matthias Oelze; Stephan Grabbe; Helmut Jonuleit; Christian Becker; Andreas Daiber; Ari Waisman; Thomas Münzel

Background— Angiotensin II (ATII), a potent vasoconstrictor, causes hypertension, promotes infiltration of myelomonocytic cells into the vessel wall, and stimulates both vascular and inflammatory cell NADPH oxidases. The predominant source of reactive oxygen species, eg, vascular (endothelial, smooth muscle, adventitial) versus phagocytic NADPH oxidase, and the role of myelomonocytic cells in mediating arterial hypertension have not been defined yet. Methods and Results— Angiotensin II (1 mg · kg−1 · d−1 for 7 days) increased the number of both CD11b+Gr-1lowF4/80+ macrophages and CD11b+Gr-1highF4/80− neutrophils in mouse aorta (verified by flow cytometry). Selective ablation of lysozyme M-positive (LysM+) myelomonocytic cells by low-dose diphtheria toxin in mice with inducible expression of the diphtheria toxin receptor (LysMiDTR mice) reduced the number of monocytes in the circulation and limited ATII-induced infiltration of these cells into the vascular wall, whereas the number of neutrophils was not reduced. Depletion of LysM+ cells attenuated ATII-induced blood pressure increase (measured by radiotelemetry) and vascular endothelial and smooth muscle dysfunction (assessed by aortic ring relaxation studies) and reduced vascular superoxide formation (measured by chemiluminescence, cytochrome c assay, and oxidative fluorescence microtopography) and the expression of NADPH oxidase subunits gp91phox and p67phox (assessed by Western blot and mRNA reverse-transcription polymerase chain reaction). Adoptive transfer of wild-type CD11b+Gr-1+ monocytes into depleted LysMiDTR mice reestablished ATII-induced vascular dysfunction, oxidative stress, and arterial hypertension, whereas transfer of CD11b+Gr-1+ neutrophils or monocytes from gp91phox or ATII receptor type 1 knockout mice did not. Conclusions— Infiltrating monocytes with a proinflammatory phenotype and macrophages rather than neutrophils appear to be essential for ATII-induced vascular dysfunction and arterial hypertension.


Hypertension | 2006

Nebivolol Inhibits Superoxide Formation by NADPH Oxidase and Endothelial Dysfunction in Angiotensin II–Treated Rats

Matthias Oelze; Andreas Daiber; Ralf P. Brandes; Marcus Hortmann; Philip Wenzel; Ulrich Hink; Eberhard Schulz; Hanke Mollnau; Alexandra von Sandersleben; Andrei L. Kleschyov; Alexander Mülsch; Huige Li; Ulrich Förstermann; Thomas Münzel

Nebivolol is a &bgr;1-receptor antagonist with vasodilator and antioxidant properties. Because the vascular NADPH oxidase is an important superoxide source, we studied the effect of nebivolol on endothelial function and NADPH oxidase activity and expression in the well-characterized model of angiotensin II–induced hypertension. Angiotensin II infusion (1 mg/kg per day for 7 days) caused endothelial dysfunction in male Wistar rats and increased vascular superoxide as detected by lucigenin-derived chemiluminescence, as well as dihydroethidine staining. Vascular NADPH oxidase activity, as well as expression at the mRNA and protein level, were markedly upregulated, as well as NOS III uncoupled, as evidenced by NO synthase III inhibitor experiments and dihydroethidine staining and by markedly decreased hemoglobin–NO concentrations. Treatment with the &bgr;-receptor blocker nebivolol but not metoprolol (10 mg/kg per day for each drug) normalized endothelial function, reduced superoxide formation, increased NO bioavailability, and inhibited upregulation of the activity and expression of the vascular NADPH oxidase, as well as membrane association of NADPH oxidase subunits (Rac1 and p67phox). In addition, NOS III uncoupling was prevented. In vitro treatment with nebivolol but not atenolol or metoprolol induced a dissociation of p67phox and Rac1, as well as an inhibition of NADPH oxidase activity assessed in heart membranes from angiotensin II–infused animals, as well as in homogenates of Nox1 and cytosolic subunit–transfected and phorbol ester–stimulated HEK293 cells. These findings indicate that nebivolol interferes with the assembly of NADPH oxidase. Thus, inhibitory effects of this &bgr;-blocker on vascular NADPH oxidase may explain, at least in part, its beneficial effect on endothelial function in angiotensin II–induced hypertension.


Cardiovascular Research | 2008

Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction

Philip Wenzel; Swenja Schuhmacher; Joachim Kienhöfer; Johanna Müller; Marcus Hortmann; Matthias Oelze; Eberhard Schulz; Nicolai Treiber; Toshihiro Kawamoto; Karin Scharffetter-Kochanek; Thomas Münzel; Alexander Bürkle; Markus Bachschmid; Andreas Daiber

AIMS Imbalance between pro- and antioxidant species (e.g. during aging) plays a crucial role for vascular function and is associated with oxidative gene regulation and modification. Vascular aging is associated with progressive deterioration of vascular homeostasis leading to reduced relaxation, hypertrophy, and a higher risk of thrombotic events. These effects can be explained by a reduction in free bioavailable nitric oxide that is inactivated by an age-dependent increase in superoxide formation. In the present study, mitochondria as a source of reactive oxygen species (ROS) and the contribution of manganese superoxide dismutase (MnSOD, SOD-2) and aldehyde dehydrogenase (ALDH-2) were investigated. METHODS AND RESULTS Age-dependent effects on vascular function were determined in aortas of C57/Bl6 wild-type (WT), ALDH-2(-/-), MnSOD(+/+), and MnSOD(+/-) mice by isometric tension measurements in organ chambers. Mitochondrial ROS formation was measured by luminol (L-012)-enhanced chemiluminescence and 2-hydroxyethidium formation with an HPLC-based assay in isolated heart mitochondria. ROS-mediated mitochondrial DNA (mtDNA) damage was detected by a novel and modified version of the fluorescent-detection alkaline DNA unwinding (FADU) assay. Endothelial dysfunction was observed in aged C57/Bl6 WT mice in parallel to increased mitochondrial ROS formation and oxidative mtDNA damage. In contrast, middle-aged ALDH-2(-/-) mice showed a marked vascular dysfunction that was similar in old ALDH-2(-/-) mice suggesting that ALDH-2 exerts age-dependent vasoprotective effects. Aged MnSOD(+/-) mice showed the most pronounced phenotype such as severely impaired vasorelaxation, highest levels of mitochondrial ROS formation and mtDNA damage. CONCLUSION The correlation between mtROS formation and acetylcholine-dependent relaxation revealed that mitochondrial radical formation significantly contributes to age-dependent endothelial dysfunction.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Nebivolol Prevents Vascular NOS III Uncoupling in Experimental Hyperlipidemia and Inhibits NADPH Oxidase Activity in Inflammatory Cells

Hanke Mollnau; Eberhard Schulz; Andreas Daiber; Stephan Baldus; Matthias Oelze; Michael August; Maria Wendt; Ulrich Walter; Carolin Geiger; Rahul Agrawal; Andrei L. Kleschyov; Thomas Meinertz; Thomas Münzel

Objectives—Nebivolol, in contrast to other selective &bgr;1-adrenergic receptor antagonists like atenolol, improves endothelial function in patients with oxidative stress within vascular tissue. With the present studies we sought to determine whether &bgr; receptor blockade with nebivolol may improve endothelial function in hyperlipidemia and whether this is attributable to reductions in vascular oxidative stress. Methods and Results—Watanabe heritable hyperlipidemic rabbits (WHHL) were treated with nebivolol (10 mg/kg per day for 8 weeks). New Zealand white rabbits (NZWR) served as controls. Nebivolol improved endothelial function, reduced vascular superoxide and vascular macrophage infiltration, and prevented NO synthase uncoupling in WHHL. Nebivolol treatment did not modify the expression of sGC or cGK-I but improved cGK-I activity (assessed by the phosphorylation state of the VAsodilator Stimulated Phosphoprotein at serine239, P-VASP). NAD(P)H oxidase activity in whole blood and isolated neutrophils was dose-dependently inhibited by nebivolol, whereas atenolol, metoprolol, and carvedilol were markedly less effective. Conclusions—Nebivolol therapy effectively prevents NO synthase III uncoupling and prevents activation of the neutrophil NAD(P)H oxidase and infiltration of inflammatory cells. These novel antioxidative stress actions of this compound may explain partly the beneficial effects on endothelial function in patients with enhanced vascular oxidative stress.


Circulation Research | 2003

Does Nitric Oxide Mediate the Vasodilator Activity of Nitroglycerin

Andrei L. Kleschyov; Matthias Oelze; Andreas Daiber; Yale Huang; Hanke Mollnau; Eberhard Schulz; Karsten Sydow; Birgit Fichtlscherer; Alexander Mülsch; Thomas Münzel

Abstract— Nitroglycerin (glyceryl trinitrate, GTN) relaxes blood vessels primarily via activation of the soluble guanylyl cyclase (sGC)/cGMP/cGMP-dependent protein kinase (cGK-I) pathway. Although the precise mechanism of sGC activation by GTN in the vascular wall is unknown, the mediatory role of nitric oxide (NO) has been postulated. We tested the GTN/NO hypothesis in different types of isolated rat and rabbit blood vessels using two novel approaches: (1) EPR spin trapping using colloid Fe(DETC)2 and (2) analysis of cGK-I–dependent phosphorylation of the vasodilator-stimulated phosphoprotein at Ser239 (P-VASP). For comparison, another organic nitrate, isosorbide dinitrate (ISDN), and endothelium-dependent vasodilator, calcium ionophore A23187, were tested. We found a marked discrepancy between GTN’s strong vasoactivity (vasodilation and augmentation of P-VASP) and its poor NO donor properties. In aortas precontracted with phenylephrine, GTN, ISDN, and A23187 induced nearly full relaxations (>80%) and doubling of vascular P-VASP content at concentrations of 100 nmol/L, 100 &mgr;mol/L, and 1 &mgr;mol/L, respectively. GTN applied in vasorelaxant concentrations (10 to 1000 nmol/L) did not significantly increase the basal vascular NO production, in contrast to ISDN and A23187. The absence of GTN-derived NO was confirmed in rabbit vena cava and renal artery. A significant increase in vascular NO formation was observed only at suprapharmacological GTN concentrations (>10 &mgr;mol/L). The concentration dependency of NO formation from GTN was comparable to that of ISDN, although the latter exhibits 100-folds lower vasorelaxant potency. We conclude that GTN activates the sGC/cGMP/cGK-I pathway and induces vasorelaxation without intermediacy of the free radical NO. The full text of this article is available online at http://www.circresaha.org.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Deficiency of Glutathione Peroxidase-1 Accelerates the Progression of Atherosclerosis in Apolipoprotein E-Deficient Mice

Michael Torzewski; Viola Ochsenhirt; Andrei L. Kleschyov; Matthias Oelze; Andreas Daiber; Huige Li; Heidi Rossmann; Sotirios Tsimikas; Kurt Reifenberg; Fei Cheng; Hans-Anton Lehr; Stefan Blankenberg; Ulrich Förstermann; Thomas Münzel; Karl J. Lackner

Background—We have recently demonstrated that activity of red blood cell glutathione peroxidase-1 is inversely associated with the risk of cardiovascular events in patients with coronary artery disease. The present study analyzed the effect of glutathione peroxidase-1 deficiency on atherogenesis in the apolipoprotein E-deficient mouse. Methods and Results—Female apolipoprotein E-deficient mice with and without glutathione peroxidase-1 deficiency were placed on a Western-type diet for another 6, 12, or 24 weeks. After 24 weeks on Western-type diet, double-knockout mice (GPx-1−/−ApoE−/−) developed significantly more atherosclerosis than control apolipoprotein E-deficient mice. Moreover, glutathione peroxidase-1 deficiency led to modified atherosclerotic lesions with increased cellularity. Functional experiments revealed that glutathione peroxidase-1 deficiency leads to increased reactive oxygen species concentration in the aortic wall as well as increased overall oxidative stress. Peritoneal macrophages from double-knockout mice showed increased in vitro proliferation in response to macrophage-colony-stimulating factor. Also, we found lower levels of bioactive nitric oxide as well as increased tyrosine nitration as a marker of peroxynitrite production. Conclusions—Deficiency of an antioxidative enzyme accelerates and modifies atherosclerotic lesion progression in apolipoprotein E-deficient mice.


Circulation | 2001

Effects of In Vivo Nitroglycerin Treatment on Activity and Expression of the Guanylyl Cyclase and cGMP-Dependent Protein Kinase and Their Downstream Target Vasodilator-Stimulated Phosphoprotein in Aorta

Alexander Mülsch; Matthias Oelze; Stefan Klöss; Hanke Mollnau; Andrea Töpfer; Albert Smolenski; Ulrich Walter; Johannes-Peter Stasch; Ascan Warnholtz; Ulrich Hink; Thomas Meinertz; Thomas Münzel

BackgroundChronic in vivo treatment with nitroglycerin (NTG) induces tolerance to nitrates and cross-tolerance to nitrovasodilators and endothelium-derived nitric oxide (NO). We previously identified increased vascular superoxide formation and reduced NO bioavailability as one causal mechanism. It is still controversial whether intracellular downstream signaling to nitrovasodilator-derived NO is affected as well. Methods and ResultsWe therefore studied the effects of 3-day NTG treatment of rats and rabbits on activity and expression of the immediate NO target soluble guanylyl cyclase (sGC) and on the cGMP-activated protein kinase I (cGK-I). Tolerance was induced either by chronic NTG infusion via osmotic minipumps (rats) or by NTG patches (rabbits). Western blot analysis, semiquantitative reverse transcription-polymerase chain reaction, and Northern blot analysis revealed significant and comparable increases in the expression of sGC &agr;1 and &bgr;1 subunit protein and mRNA. Studies with the oxidative fluorescent dye hydroethidine revealed an increase in superoxide in the endothelium and smooth muscle. Stimulation with NADH increased superoxide signals in both layers. Although cGK-I expression in response to low-dose NTG was not changed, a strong reduction in vasodilator-stimulated phosphoprotein (VASP) serine239 phosphorylation (specific substrate of cGK-I) was observed in tolerant tissue from rats and rabbits. Concomitant in vivo and in vitro treatment with vitamin C improved tolerance, reduced oxidative stress, and improved P-VASP. ConclusionsWe therefore conclude that increased expression of sGC in the setting of tolerance reflects a chronic inhibition rather than an induction of the sGC–cGK-I pathway and may be mediated at least in part by increased vascular superoxide.


Journal of Biological Chemistry | 2007

Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity : Implications for mitochondrial oxidative stress and nitrate tolerance

Philip Wenzel; Ulrich Hink; Matthias Oelze; Swaantje Schuppan; Karin Schaeuble; Stefan Schildknecht; Kwok Ki Ho; Henry Weiner; Markus Bachschmid; Thomas Münzel; Andreas Daiber

Chronic therapy with nitroglycerin results in a rapid development of nitrate tolerance, which is associated with an increased production of reactive oxygen species. We have recently shown that mitochondria are an important source of nitroglycerin-induced oxidants and that the nitroglycerin-bioactivating mitochondrial aldehyde dehydrogenase is oxidatively inactivated in the setting of tolerance. Here we investigated the effect of various oxidants on aldehyde dehydrogenase activity and its restoration by dihydrolipoic acid. In vivo tolerance in Wistar rats was induced by infusion of nitroglycerin (6.6 μg/kg/min, 4 days). Vascular reactivity was measured by isometric tension studies of isolated aortic rings in response to nitroglycerin. Chronic nitroglycerin infusion lead to impaired vascular responses to nitroglycerin and decreased dehydrogenase activity, which was corrected by dihydrolipoic acid co-incubation. Superoxide, peroxynitrite, and nitroglycerin itself were highly efficient in inhibiting mitochondrial and yeast aldehyde dehydrogenase activity, which was restored by dithiol compounds such as dihydrolipoic acid and dithiothreitol. Hydrogen peroxide and nitric oxide were rather insensitive inhibitors. Our observations indicate that mitochondrial oxidative stress (especially superoxide and peroxynitrite) in response to organic nitrate treatment may inactivate aldehyde dehydrogenase thereby leading to nitrate tolerance. Glutathionylation obviously amplifies oxidative inactivation of the enzyme providing another regulatory pathway. Furthermore, the present data demonstrate that the mitochondrial dithiol compound dihydrolipoic acid restores mitochondrial aldehyde dehydrogenase activity via reduction of a disulfide at the active site and thereby improves nitrate tolerance.

Collaboration


Dive into the Matthias Oelze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge