Matthias Selke
California State University, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Selke.
Journal of Materials Chemistry | 2004
Shizhong Wang; Ruomei Gao; Feimeng Zhou; Matthias Selke
In this review, we address a highly interdisciplinary field: the use of nanomaterials as carriers for singlet oxygen photosensitizers and their potential applications in photodynamic therapy. In particular, recent advances in the use of nanoparticles including inorganic oxide-, metallic-, and polymer-based nanocomposites as photosensitizer carriers are highlighted. We review advantages and shortcomings of these diverse approaches as far as their application for photodynamic therapy is concerned. Fullerenes and their derivatives are also included, focusing on recent studies on their structure, properties, and ability to generate singlet oxygen.
Lab on a Chip | 2009
Yanju Wang; Wei-Yu Lin; Kan Liu; Rachel J. Lin; Matthias Selke; Hartmuth C. Kolb; Nangang Zhang; Xingzhong Zhao; Michael E. Phelps; Clifton Kwang-Fu Shen; Kym F. Faull; Hsian-Rong Tseng
An integrated microfluidic device has been developed to perform 1024 in situ click chemistry reactions in parallel using the bovine carbonic anhydrous II (bCAII) click chemistry system as a proof-of-concept study and a rapid hit identification approach using SPE purification and electrospray-ionization mass spectrometry, multiple reaction monitoring (MRM) analysis, all of which improves the sensitivity and throughput of the downstream analysis.
Photochemistry and Photobiology | 2014
David Ashen‐Garry; Matthias Selke
While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes are presented, and the mechanism of 1O2 generation is discussed, including evidence for singlet oxygen generation via an electron‐transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including “traditional” singlet oxygen reactions (ene reaction, [4 + 2] and [2 + 2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed.
PLOS Pathogens | 2013
Frederic Vigant; Jihye Lee; Axel Hollmann; Lukas Bahati Tanner; Zeynep Akyol Ataman; Tatyana Yun; Guanghou Shui; Hector C. Aguilar; Dong Zhang; David Meriwether; Gleyder Roman-Sosa; Lindsey R. Robinson; Terry L. Juelich; Hubert Buczkowski; Sunwen Chou; Miguel A. R. B. Castanho; Mike C. Wolf; Jennifer K. Smith; Ashley C. Banyard; Margaret Kielian; Srinivasa T. Reddy; Markus R. Wenk; Matthias Selke; Nuno C. Santos; Alexander N. Freiberg; Michael E. Jung; Benhur Lee
LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50≤0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001s specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen (1O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated 1O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. 1O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced 1O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001s mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001s limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds (oxazolidine-2,4-dithiones) with (1) 100-fold improved in vitro potency (IC50<10 nM), (2) red-shifted absorption spectra (for better tissue penetration), (3) increased quantum yield (efficiency of 1O2 generation), and (4) 10–100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p≤0.01) delayed the time to death in a murine lethal challenge model of Rift Valley Fever Virus (RVFV). The viral membrane may be a viable target for broad-spectrum antivirals that target virus-cell fusion.
Organic Letters | 2011
Jeff A. Celaje; Dong Zhang; Angela M. Guerrero; Matthias Selke
Resveratrol (1) reacts with singlet oxygen by two major pathways: A [2+2] cycloaddition forming a transient dioxetane that cleaves into the corresponding aldehydes and a [4+2] cycloaddition forming an endoperoxide that, upon heating, undergoes a rearrangement to moracin M. The rate constant by which singlet oxygen is removed by 1 (k(T)) was determined by time-resolved infrared luminescence spectroscopy to be 1.5 × 10(6) M(-1) sec(-1) in CD(3)OD, smaller than previously reported values. Chemical reaction accounts for ca. 25% of k(T).
ACS Applied Materials & Interfaces | 2015
Donghua Chen; Chunqiu Zhao; Jing Ye; Qiwei Li; Xiaoli Liu; Meina Su; Hui Jiang; Christian Amatore; Matthias Selke; Xuemei Wang
Among the noble-metal clusters, very few reports about platinum clusters were used as bioimaging probes of tumors except as a reducing catalyst. It is first established herein that the biocompatible platinum nanoclusters are spontaneously biosynthesized by cancerous cells (i.e., HepG2 (human hepatocarcinoma), A549 (lung cancer), and others) rather than noncancerous cells (i.e., L02 (human embryo liver cells)) when incubated with micromolar chloroplatinic acid solutions. These in situ biosynthesized platinum nanoclusters could be readily realized in a biological environment and emit a bright fluorescence at 460 nm, which could be further utilized to facilitate an excellent cancer-cell-killing efficiency when combined with porphyrin derivatives for photothermal treatment. This raises the possibility of providing a promising and precise bioimaging strategy for specific fluorescent self-biomarking of tumor locations and realizing fluorescence imaging-guided photothermal therapy of tumors.
Chemical Research in Toxicology | 2010
Chunhui Wu; Lixin Shi; Qingning Li; Hui Jiang; Matthias Selke; Long Ba; Xuemei Wang
The application of quantum dots (QDs) in various biomedical areas requires detailed studies of their toxicity. We report a new strategy for probing the biocompatibility of these nanocrystals, namely, a dynamic investigation of cellular uptake images, cell growth curves, metabolic activity changes, and apoptosis aspects of cadmium telluride QDs capped with cysteamine (Cys-CdTe QDs) on human hepatocellular carcinoma SMMC-7721 cells. We used a real-time cell electronic sensing (RT-CES) system in combination with fluorescence microscopy, 3-(4,5-dimethyl-thiazol-zyl)-2,5-diphenyltetrazolium bromide assay, and flow cytometry (FCM) analysis. As observed from fluorescence images and RT-CES system results, Cys-CdTe QDs can readily bind on the cell plasma membrane and then enter into the cancer cell, causing decreased adherence of cancer cells during the initial 6-12 h, while the metabolic activity apparently decreased. After 24 h, the metabolic activity of the cancer cells was significantly reduced, with continued reduction in metabolic activity observed at even longer incubation times. Moreover, FCM observation and DNA fragmentation analysis clearly indicate apoptosis-related phenomena when SMMC-7721 cells were treated with the Cys-CdTe QDs. Thus, our study reveals details of the cellular aging and death process induced by Cys-CdTe QDs.
Biomaterials | 2010
Yanyan Zhou; Lixin Shi; Qingning Li; Hui Jiang; Gang Lv; Juan Zhao; Chunhui Wu; Matthias Selke; Xuemei Wang
Photoluminescent semiconductor quantum dots (QDs) have received significant attention in biological and biomedical fields because of their attractive properties. In this contribution, we have explored and evaluated the utilization of water-soluble nanocrystal CdTe quantum dots (QDs) capped with negatively charged 3-mercapitalpropionic acid (MPA)-QDs to enhance the drug uptake into the target cancer cells and the efficiency of the biomarker and cancer treatments, by using the cytotoxicity evaluation, total internal reflection fluorescence microscopy, electrochemistry and UV-Vis absorption spectroscopy. Our results illustrate that the MPA-CdTe QDs could effectively facilitate the interaction of anticancer agent daunorubicin (DNR) with leukemia cells and the efficiency of biolabeling in cancer cells. Therefore, the present study affords a new potential method for simultaneous cellular inhibition and imaging of cancer cells.
Scientific Reports | 2015
Chunqiu Zhao; Fawad Ur Rehman; Yanlong Yang; Xiaoqi Li; Dong Zhang; Hui Jiang; Matthias Selke; Xuemei Wang; Chongyang Liu
Since Rheumatoid arthritis (RA) is one of the major human joint diseases with unknown etiology, the early diagnosis and treatment of RA remains a challenge. In this contribution we have explored the possibility to utilize novel nanocomposites of tetera suplhonatophenyl porphyrin (TSPP) with titanium dioxide (TiO2) nanowhiskers (TP) as effective bio-imaging and photodynamic therapeutic (PDT) agent for RA theranostics. Our observations demonstrate that TP solution PDT have an ameliorating effect on the RA by decreasing significantly the IL-17 and TNF-α level in blood serum and fluorescent imaging could enable us to diagnose the disease in subclinical stages and bio-mark the RA insulted joint.
Photochemistry and Photobiology | 2010
Siu-Wai Lai; Ying Liu; Dong Zhang; Bin Wang; Chun-Nam Lok; Chi-Ming Che; Matthias Selke
Luminescent cyclometalated platinum(II) complexes, namely [Pt(Thpy)(PPh3)X]n+ (HThpy = 2‐(2′‐thienyl)pyridine; X = Cl− (1), n = 0; X = CH3CN (2), pyridine (3), n = 1) and [Pt(Thpy)(HThpy)Y]n+ (Y = Cl− (4), n = 0; Y = pyridine (5), n = 1), exhibit structured emission with peak maximum at ∼556 and 598 nm in degassed acetonitrile and with emission quantum yield and lifetime of up to 0.38 and 26 μs, respectively. These complexes are efficient photosensitizers of singlet oxygen with yields up to >90%. Complex 5 exhibited photocytotoxicity towards cancer cells and fluorescence microscopic images of cells incubated with 5 reveal substantial uptake at the nucleus and mitochondria.