Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Overdick is active.

Publication


Featured researches published by Michael Overdick.


ieee nuclear science symposium | 2005

Counting and integrating readout for direct conversion X-ray imaging concept, realization and first prototype measurements

Edgar Kraft; P. Fischer; M. Karagounis; M. Koch; H. Krueger; I. Peric; Norbert Wermes; Christoph Herrmann; A. Nascetti; Michael Overdick; Walter Ruetten

A novel signal processing concept for X-ray imaging with directly converting pixelated semiconductor sensors is presented. The novelty of this approach compared to existing concepts is the combination of charge integration and single photon counting in every single pixel. Simultaneous operation of both signal processing chains extends the dynamic range beyond the limits of the individual schemes and allows determination of the mean photon energy. Medical applications such as X-ray computed tomography can benefit from this additional spectral information through improved contrast and the ability to determine the hardening of the tube spectrum due to attenuation by the scanned object. A prototype chip in 0.35-micrometer technology was successfully tested. The pixel electronics are designed using a low-noise differential current mode logic and provide configurable feedback modes, leakage current compensation and various test circuits. This paper will discuss measurement results of the prototype structures and give details on the circuit design


IEEE Transactions on Nuclear Science | 2009

Status of Direct Conversion Detectors for Medical Imaging With X-Rays

Michael Overdick; Christian Bäumer; Klaus Jürgen Engel; Johannes Fink; Christoph Herrmann; H. Krüger; Matthias Simon; Roger Steadman; Gnter Zeitler

Imaging detectors for medical X-ray and computed tomography (CT) applications have undergone many improvements and technology changes over time. But most (dynamic) detectors sold in this field still rely on indirect conversion, using scintillators and photodiodes to convert the X-ray quanta ultimately into electrical signals. Direct conversion detectors promise very high spatial resolution and high signal-to-noise ratios. Some direct conversion materials may allow for counting or even energy resolving detection of the X-ray quanta. Based on this, for example spectrally resolving CT systems are becoming an interesting option for the next decade. This contribution highlights the requirements of advanced medical X-ray and CT imaging and reviews examples of status and progress in the field. The emphasis is on the direct conversion sensors for pixelated detectors, but considerations on read-out concepts and on associated challenges such as interconnects will also be presented. Finally, the most burning issues, such as count rate limitations and polarization effects, will be discussed from an application point of view.


Medical Imaging 2001: Physics of Medical Imaging | 2001

Temporal artifacts in flat dynamic x-ray detectors

Michael Overdick; Torsten Solf; Hans-Aloys Wischmann

Flat X-ray detectors based on CsI:Tl scintillators and amorphous silicon photodiodes are known to exhibit temporal artefacts (ghost images) which decay over time. Previously, these temporal artefacts have been attributed mainly to residual signals from the amorphous silicon photodiodes. More detailed experiments presented here show that a second class of effects, the so-called gain effects, also contributes significantly to the observed temporal artefacts. Both the residual signals and the photodiode gain effect have been characterized under various exposure conditions in the study presented here. The results of the experiments quantitatively show the decay of the temporal artefacts. Additionally, the influence of the detectors reset light on both effects in the photodiode has been studied in detail. The data from the measurements is interpreted based on a simple trapping model which suggests a strong link between the photodiode residual signals and the photodiode gain effect. For the residual signal effect a possible correction scheme is described. Furthermore, the relevance of the remaining temporal artefacts for the applications is briefly discussed for both the photodiode residual signals and the photodiode gain effect.


nuclear science symposium and medical imaging conference | 2004

Analysis of lead oxide (PbO) layers for direct conversion X-ray detection

Matthias Simon; Stefan Peter Grabowski; Bernd Menser; Gerd Much; A. Nascetti; Michael Overdick; Detlef Uwe Wiechert; Ronald A. Ford; Anthony R. Franklin; M. J. Powell

Lead oxide (PbO) is a candidate direct conversion material for medical X-ray applications. We produced various samples and detectors with thick PbO layers. X-ray performance data such as dark current, charge generation yield and temporal behavior were evaluated on small samples. The influence of the metal contacts was studied in detail. We also covered large a-Si thin-film transistor (TFT)-plates with PbO. Imaging results from a large detector with an active area of 18 cm /spl times/ 20 cm are presented. The detector has 960 /spl times/ 1080 pixels with a pixel pitch of 184 /spl mu/m. The modulation transfer function at the Nyquist frequency of 2.72 linepairs/mm is 50%. Finally, a full size X-ray image is presented.


Medical Imaging 2004: Physics of Medical Imaging | 2004

PbO as direct conversion X-ray detector material

Matthias Simon; Ronald A. Ford; Anthony R. Franklin; Stefan Peter Grabowski; Bernd Menser; Gerd Much; A. Nascetti; Michael Overdick; M. J. Powell; Detlef Uwe Wiechert

A flat X-ray detector with lead oxide (PbO) as direct conversion material has been developed. The material lead oxide, which has a very high X-ray absorption, was analysed in detail including Raman spectroscopy and electron microscopy. X-ray performance data such as dark current, charge yield and temporal behaviour were evaluated on small functional samples. A process to cover a-Si TFT-plates with PbO has been developed. We present imaging results from a large detector with an active area of 18 × 20 cm2. The detector has 1080 × 960 pixels with a pixel pitch of 184 μm. The linearity of detector response was verified. The NPS was determined with a total dark noise as low as 1800 electrons/pixel. The MTF was measured with two different methods: first with the analysis of a square wave phantom and second with a narrow slit. The MTF at the Nyquist frequency of 2.72 lp/mm was 50 %. We calculated first DQE values of our prototype detector plates. Full size images of anatomic and technical phantoms are shown.


Medical Imaging 2002: Physics of Medical Imaging | 2002

Correction of amplifier nonlinearity, offset, gain, temporal artifacts, and defects for flat-panel digital imaging devices

Hans-Aloys Wischmann; Hans A. Luijendijk; Henk J. Meulenbrugge; Michael Overdick; Ralf Schmidt; Kourosh Kiani

Flat X-ray detectors require a systematic calibration and correction of image artifacts. Based on an analysis of the physics of the image generation chain, this work presents a unified framework for the correction of these artifacts. Algorithms for the correction steps are presented, including a new method for the calibration and correction of the intertwined offset, gain, and non-linearity as well as an improved method for the interpolation of defects, where the interpolation direction is chosen based on a novel method. Experiments using a hand phantom without and with a wire, imaged on a flat detector, demonstrate that line artifacts in Digital Subtraction Angiography (DSA) applications due to differences in non-linearity between adjacent amplifiers are significantly reduced by applying the non-linearity, offset, and gain correction in the correct order, as proposed in this work. For the defect interpolation investigations, we used medical images of angiographic image subtraction sequences, containing small vessels. Artificial clusters of pixel defects were added to these images and subsequently corrected. The experimental verification clearly demonstrates the robustness and superior performance of the new interpolation scheme, especially for clusters of defects.


arXiv: Instrumentation and Detectors | 2008

CIX: a detector for spectrally enhanced x-ray imaging by simultaneous counting and integrating

H. Krüger; Johannes Fink; Edgar Kraft; N. Wermes; P. Fischer; I. Peric; Christoph Herrmann; Michael Overdick; W. Rütten

A hybrid pixel detector based on the concept of simultaneous charge integration and photon counting will be presented. The second generation of a counting and integrating X-ray prototype CMOS chip (CIX) has been operated with different direct converting sensor materials (CdZnTe and CdTe) bump bonded to its 8x8 pixel matrix. Photon counting devices give excellent results for low to medium X-ray fluxes but saturate at high rates while charge integration allows the detection of very high fluxes but is limited at low rates by the finite signal to noise ratio. The combination of both signal processing concepts therefore extends the resolvable dynamic range of the X-ray detector. In addition, for a large region of the dynamic range, where counter and integrator operate simultaneously, the mean energy of the detected X-ray spectrum can be calculated. This spectral information can be used to enhance the contrast of the X-ray image. The advantages of the counting and integrating signal processing concept and the performance of the imaging system will be reviewed. The properties of the system with respect to dynamic range and sensor response will be discussed and examples of imaging with additional spectral information will be presented.


ieee nuclear science symposium | 2008

Towards direct conversion detectors for medical imaging with X-rays

Michael Overdick; Christian Bäumer; Klaus Jürgen Engel; Johannes Fink; Christoph Herrmann; H. Krüger; Matthias Simon; Roger Steadman; Günter Zeitler

Imaging detectors for medical X-ray and Computed Tomography (CT) applications have undergone many improvements and technology changes over time. But most (dynamic) detectors sold in this field still rely on indirect conversion, using scintillators and photodiodes to convert the X-ray quanta ultimately into electrical signals. Direct conversion detectors promise very high spatial resolution and high signal-to-noise ratios. Some direct conversion materials may allow for counting or even energy resolving detection of the X-ray quanta. Based on this, for example spectrally resolving CT systems are becoming an interesting option for the next decade. This contribution highlights the requirements of advanced medical X-ray and CT imaging and shows examples of status and progress in the field. The emphasis is on the direct conversion sensors for pixelated detectors, but considerations on read-out concepts and on associated challenges such as interconnects will also be presented. Finally, the most burning issues, such as count rate limitations and polarization effects, will be discussed from an application point of view.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Flat detector with integrated dose sensing

Michael Overdick; Ronald A. Ford; Anthony R. Franklin; A. Nascetti; M. J. Powell; Walter Ruetten; Matthias Simon

Integrated dose sensing in Flat Detectors allows a during pulse control of the X-ray illumination without the need for external dose sensing devices. Standard designs of Flat Detectors do not allow during pulse dose sensing since the information is collected from the pixels only in the read-out phase after the X-ray illumination. This paper introduces a special detector plate design for obtaining dose sensing information directly from the X-ray detector while the X-ray pulse is being applied. This dose sensing information is read at a lower spatial resolution than the actual X-ray image but with a sub-millisecond temporal resolution. The dose sensing operates without any additional radiation burden on the patient and without attenuation of the image information. Experimental results from a small area (4x4 cm2) detector are presented, including an analysis of noise, linearity and cross-talk.


Medical Imaging 2005: Physics of Medical Imaging | 2005

Linear system models for lag in flat dynamic x-ray detectors

Bernd Menser; Raoul J. M. Bastiaens; A. Nascetti; Michael Overdick; Matthias Simon

The detective quantum efficiency (DQE) is regarded as a suitable parameter to assess the global imaging performance of an x-ray detector. However, residual signals increase the signal-to-noise ratio and therefore artificially increase the measured DQE compared to a lag-free system. In this paper, the impact of lag on the DQE is described for two different sources of lag using linear system models. In addition to the commonly used temporal filtering model for trapping, an increase of the dark current is considered as another potential source of lag. It is shown that the assumed lag model has a crucial impact on the choice of an adequate lag estimation method. Examples are given using the direct conversion material PbO. It turns out that the most general approach is the evaluation of the temporal noise power spectrum. A new algorithm is proposed for the crucial issue of robustly estimating the power spectrum at frequency zero.

Collaboration


Dive into the Michael Overdick's collaboration.

Top Co-Authors

Avatar

A. Nascetti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge