Matthieu Le Hénaff
Cooperative Institute for Marine and Atmospheric Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthieu Le Hénaff.
Environmental Science & Technology | 2012
Claire B. Paris; Matthieu Le Hénaff; Zachary M. Aman; Ajit Subramaniam; Judith Helgers; Dong-Ping Wang; Vassiliki H. Kourafalou; Ashwanth Srinivasan
During the Deepwater Horizon incident, crude oil flowed into the Gulf of Mexico from 1522 m underwater. In an effort to prevent the oil from rising to the surface, synthetic dispersants were applied at the wellhead. However, uncertainties in the formation of oil droplets and difficulties in measuring their size in the water column, complicated further assessment of the potential effect of the dispersant on the subsea-to-surface oil partition. We adapted a coupled hydrodynamic and stochastic buoyant particle-tracking model to the transport and fate of hydrocarbon fractions and simulated the far-field transport of the oil from the intrusion depth. The evaluated model represented a baseline for numerical experiments where we varied the distributions of particle sizes and thus oil mass. The experiments allowed to quantify the relative effects of chemical dispersion, vertical currents, and inertial buoyancy motion on oil rise velocities. We present a plausible model scenario, where some oil is trapped at depth through shear emulsification due to the particular conditions of the Macondo blowout. Assuming effective mixing of the synthetic dispersants at the wellhead, the model indicates that the submerged oil mass is shifted deeper, decreasing only marginally the amount of oil surfacing. In this scenario, the oil rises slowly to the surface or stays immersed. This suggests that other mechanisms may have contributed to the rapid surfacing of oil-gas mixture observed initially. The study also reveals local topographic and hydrodynamic processes that influence the oil transport in eddies and multiple layers. This numerical approach provides novel insights on oil transport mechanisms from deep blowouts and on gauging the subsea use of synthetic dispersant in mitigating coastal damage.
Environmental Science & Technology | 2012
Matthieu Le Hénaff; Vassiliki H. Kourafalou; Claire B. Paris; Judith Helgers; Zachary M. Aman; Patrick J. Hogan; Ashwanth Srinivasan
Following the Deepwater Horizon blowout, major concerns were raised about the probability that the Loop Current would entrain oil at the surface of the Gulf of Mexico toward South Florida. However, such a scenario did not materialize. Results from a modeling approach suggest that the prevailing winds, through the drift they induced at the ocean surface, played a major role in pushing the oil toward the coasts along the northern Gulf, and, in synergy with the Loop Current evolution, prevented the oil from reaching the Florida Straits. This implies that both oceanic currents and surface wind-induced drift must be taken into account for the successful forecasting of the trajectories and landfall of oil particles, even in energetic environments such as the Gulf of Mexico. Consequently, the time range of these predictions is limited to the weather forecasting range, in addition to the range set up by ocean forecasting capabilities.
Journal of Geophysical Research | 2006
Anne-Charlotte Peter; Matthieu Le Hénaff; Yves du Penhoat; Christophe E. Menkes; Frédéric Marin; Jérôme Vialard; Guy Caniaux; Alban Lazar
In the present study, the physical processes that control the seasonal cycle of sea surface temperature in the tropical Atlantic Ocean are investigated. A high-resolution ocean general circulation model is used to diagnose the various contributions to the mixed layer heat budget. The simulation reproduces the main features of the circulation and thermal structure of the tropical Atlantic. A close examination of the mixed layer heat budget is then undertaken. At a first order, the mixed layer temperature balance in the equatorial band results from cooling by vertical processes and heating by atmospheric heat fluxes and eddies (mainly tropical instability waves). Cooling by subsurface processes is the strongest in June-August, when easterlies are strong, with a second maximum in December. Heating by the atmosphere is maximum in February-March and September-October, whereas eddies are most active in boreal summer. Unlike previous observational studies, horizontal advection by low-frequency currents plays here only a minor role in the heat budget. Off equator, the sea surface temperature variability is mainly governed by atmospheric forcing all year long, except in the northeastern part of the basin where strong eddies generated at the location of the thermal front significantly contribute to the heat budget in boreal summer. Finally, comparisons with previously published heat budgets calculated from observations show good qualitative agreement, except that subsurface processes dominate the cooling over zonal advection in the present study.
Journal of Atmospheric and Oceanic Technology | 2008
Matthieu Le Hénaff; Pierre De Mey; Baptiste Mourre; Pierre-Yves Le Traon
Abstract The authors investigate the potential qualitative improvement brought by wide-swath, interferometry-based ocean altimetry measurements with respect to classical nadir altimeters in a coastal/shelf data assimilation system. In addition, particular attention is paid to roll errors, which could significantly reduce the expected benefits of wide-swath altimetry. A barotropic, nonlinear free-surface model is set up over the European shelf as part of an ensemble Kalman filter. Experiments assimilating simulated data are performed over the North Sea to test the ability of altimeter configurations to reduce model errors due to the action of meteorological forcing in the presence of bathymetric uncertainties. A simplified wide-swath observation scheme is used, composed of nadir altimeter height plus a nadir-centered cross-track sea level slope measurement. The simplified wide-swath measurements are found to be able to constrain events unsampled by a single nadir altimeter owing to a wider domain of influe...
Computational Geosciences | 2016
Guotu Li; Mohamed Iskandarani; Matthieu Le Hénaff; Justin Winokur; Olivier P. Le Maître; Omar M. Knio
This study aims at analyzing the combined impact of uncertainties in initial conditions and wind forcing fields in ocean general circulation models (OGCM) using polynomial chaos (PC) expansions. Empirical orthogonal functions (EOF) are used to formulate both spatial perturbations to initial conditions and space-time wind forcing perturbations, namely in the form of a superposition of modal components with uniformly distributed random amplitudes. The forward deterministic HYbrid Coordinate Ocean Model (HYCOM) is used to propagate input uncertainties in the Gulf of Mexico (GoM) in spring 2010, during the Deepwater Horizon oil spill, and to generate the ensemble of model realizations based on which PC surrogate models are constructed for both localized and field quantities of interest (QoIs), focusing specifically on sea surface height (SSH) and mixed layer depth (MLD). These PC surrogate models are constructed using basis pursuit denoising methodology, and their performance is assessed through various statistical measures. A global sensitivity analysis is then performed to quantify the impact of individual modes as well as their interactions. It shows that the local SSH at the edge of the GoM main current—the Loop Current—is mostly sensitive to perturbations of the initial conditions affecting the current front, whereas the local MLD in the area of the Deepwater Horizon oil spill is more sensitive to wind forcing perturbations. At the basin scale, the SSH in the deep GoM is mostly sensitive to initial condition perturbations, while over the shelf it is sensitive to wind forcing perturbations. On the other hand, the basin MLD is almost exclusively sensitive to wind perturbations. For both quantities, the two sources of uncertainty have limited interactions. Finally, the computations indicate that whereas local quantities can exhibit complex behavior that necessitates a large number of realizations, the modal analysis of field sensitivities can be suitably achieved with a moderate size ensemble.
Ocean Dynamics | 2016
Julien Lamouroux; Guillaume Charria; Pierre De Mey; Stéphane Raynaud; Catherine Heyraud; Philippe Craneguy; Franck Dumas; Matthieu Le Hénaff
In the Bay of Biscay and the English Channel, in situ observations represent a key element to monitor and to understand the wide range of processes in the coastal ocean and their direct impacts on human activities. An efficient way to measure the hydrological content of the water column over the main part of the continental shelf is to consider ships of opportunity as the surface to cover is wide and could be far from the coast. In the French observation strategy, the RECOPESCA programme, as a component of the High frequency Observation network for the environment in coastal SEAs (HOSEA), aims to collect environmental observations from sensors attached to fishing nets. In the present study, we assess that network using the Array Modes (ArM) method (a stochastic implementation of Le Hénaff et al. Ocean Dyn 59: 3–20. doi: 10.1007/s10236-008-0144-7, 2009). That model ensemble-based method is used here to compare model and observation errors and to quantitatively evaluate the performance of the observation network at detecting prior (model) uncertainties, based on hypotheses on error sources. A reference network, based on fishing vessel observations in 2008, is assessed using that method. Considering the various seasons, we show the efficiency of the network at detecting the main model uncertainties. Moreover, three scenarios, based on the reference network, a denser network in 2010 and a fictive network aggregated from a pluri-annual collection of profiles, are also analysed. Our sensitivity study shows the importance of the profile positions with respect to the sheer number of profiles for ensuring the ability of the network to describe the main error modes. More generally, we demonstrate the capacity of this method, with a low computational cost, to assess and to design new in situ observation networks.
Journal of Operational Oceanography | 2017
George R. Halliwell; Michael Mehari; Matthieu Le Hénaff; Villy H. Kourafalou; Ioannis S. Androulidakis; Hee Sook Kang; Robert Atlas
ABSTRACT Observing System Simulated Experiments (OSSEs) performed during the 2014 North Atlantic hurricane season quantify ocean observing system impacts with respect to improving ocean model initialisation in coupled tropical cyclone (TC) prediction systems. The suitability of the OSSE system forecast model (FM) with respect to the previously validated Nature Run is demonstrated first. Analyses are then performed to determine the calibration required to obtain credible OSSE impact assessments. Impacts on errors and biases in fields important to TC prediction are first quantified for three major components of the existing operational ocean observing system. Satellite altimetry provides the greatest positive impact, followed by Argo floats and sea surface temperature measurements from both satellite and in-situ systems. The OSSE system is then used to investigate observing system enhancements, specifically regional underwater glider deployments during the 2014 hurricane season. These deployments resulted in modest positive impacts on ocean analyses that were limited by (1) errors in the horizontal structure of the increment field imposed by individual gliders and (2) memory loss in the spreading of these corrections by nonlinear model dynamics. The high-resolution, three-dimensional representation of the truth available in OSSE systems allows these issues to be studied without high-density ocean observations.
Journal of Geophysical Research | 2017
Vassiliki H. Kourafalou; Yannis S. Androulidakis; Matthieu Le Hénaff; Hee Sook Kang
Mesoscale anticyclonic eddies along the northern Cuban coast (CubANs) have been identified in the Straits of Florida, associated with the northward shift of the Florida Current (FC) and the anticyclonic curvature of the Loop Current (LC) at the western entrance of the Straits. The dynamics of CubAN eddies and their interaction with the LC/FC system are described for the first time using satellite, drifter and buoy data, and a high-resolution model. It is shown that the evolution of CubANs to the south of the FC front complements the evolution of cyclonic eddies to the north of the FC, advancing previous studies on synergy between FC meandering and eddy activity. Two types of CubAN eddies are characterized: (a) a main anticyclonic cell (type “A”) within the core of the LC during retracted phase conditions, associated with the process of LC Eddy (LCE) shedding from an extended LC, and (b) an individual, distinct anticyclonic eddy that is released from the main LC core and is advected eastward, along the northern Cuban coast (type “B”). There are also mixed cases, when the process of LCE shedding has started, so a type “A” CubAN is being formed, in the presence of one or more eastward progressing type “B” eddies. CubAN evolution is associated with an increased mixed layer and weaker stratification of the upper ocean along the eddys track. The cyclonic activity along the Cuban coast and wind-induced upwelling events also contribute to the evolution and fate of the CubAN eddies.
Journal of Geophysical Research | 2018
Yannis S. Androulidakis; Vassiliki H. Kourafalou; Tamay M. Özgökmen; Oscar Garcia-Pineda; Björn Lund; Matthieu Le Hénaff; Chuanmin Hu; Brian K. Haus; Guillaume Novelli; Cedric M. Guigand; H. Kang; Lars Robert Hole; Jochen Horstmann
The Taylor Energy Site is located in the vicinity of the Mississippi Delta region over the Northern Gulf of Mexico (NGoM). Surface oil patches have been persistently observed within this site since 2004, when an oil rig was destroyed by Hurricane Ivan. A multiplatform observational experiment was conducted in April 2017 to investigate, for the first time, the main hydrocarbon pathways from the Taylor Energy Site toward the NGoM continental shelves, and the Gulf interior, under the influence of local and regional physical processes. Results indicate that the Mississippi River (MR)-induced fronts over the Taylor Energy Site, in combination with local circulation, prevailing winds and broader regional dynamics determine the hydrocarbon transport. The drifters deployed during the field experiment, in tandem with satellite data, drone imagery, wind measurements, and radar-derived data, efficiently described three major hydrocarbon pathways, associated with MR plume dynamics (downstream/upstream coastal currents) and basin-wide circulation (offshore pathway). Two different types of drifters, drogued and undrogued, showed clearly different pathways, which suggest potential differences in the expected advection of oil, depending on whether it forms a surface slick or whether it is partially mixed below the surface. The existence of multiple river fronts influenced the fate of oiled waters, preventing the hydrocarbons from reaching the Delta, like a natural boom barrier, trapping and directing the oil either westward or eastward. Thermohaline measurements showed that the MR plume near Taylor was 5–10 m deep, while the clearer ocean was characterized by a 40 m upper ocean homogenous layer.
Geophysical Research Letters | 2018
Christopher S. Meinen; Sabrina Speich; Alberto R. Piola; Isabelle J. Ansorge; Edmo J. D. Campos; Marion Kersalé; Thierry Terre; Maria Paz Chidichimo; Tarron Lamont; O. T. Sato; Renellys C. Perez; Daniel Valla; Marcel van den Berg; Matthieu Le Hénaff; Shenfu Dong; Silvia L. Garzoli
Six years of simultaneous moored observations near the western and eastern boundaries of the South Atlantic are combined with satellite winds to produce a daily time series of the basin-wide meridional overturning circulation (MOC) volume transport at 34.5°S. The results demonstrate that barotropic and baroclinic signals at both boundaries cause significant transport variations, and as such must be concurrently observed. The data, spanning ~20 months during 2009–2010 and ~4 years during 2013–2017, reveal a highly energetic MOC record with a temporal standard deviation of 8.3 Sv, and strong variations at time scales ranging from a few days to years (peak-to-peak range = 54.6 Sv). Seasonal transport variations are found to have both semiannual (baroclinic) and annual (Ekman and barotropic) timescales. Interannual MOC variations result from both barotropic and baroclinic changes, with density profile changes at the eastern boundary having the largest impact on the year-to-year variations. Plain Language Summary Changes in the meridional overturning circulation, characterized by north-south flows throughout the Atlantic Ocean basin and vertical exchange between the surface and the deep ocean, are related to changes in important ocean-atmosphere-climate signals like precipitation patterns, sea level, and extreme weather (e.g., drought, heat waves, and hurricane intensification). This study presents, for the first time, a multiyear daily record of the meridional overturning circulation flow based on direct measurements in the South Atlantic Ocean at 34.5°S. The roughly six years of observations presented in this study provided the ability to study seasonal and interannual changes in these important flows with continuous daily data, and they demonstrated a complexity of the ocean circulation as compared to other latitudes where this flow has been studied in the past.