Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattia Pistone is active.

Publication


Featured researches published by Mattia Pistone.


Geology | 2015

Gas-driven filter pressing in magmas: Insights into in-situ melt segregation from crystal mushes

Mattia Pistone; Fabio Arzilli; Katherine J. Dobson; Benoit Cordonnier; Eric Reusser; Peter Ulmer; Federica Marone; Alan G. Whittington; Lucia Mancini; Julie L. Fife; Jonathan D. Blundy

Gas-driven filter pressing is the process of melt expulsion from a volatile-saturated crystal mush, induced by the buildup and subsequent release of gas pressure. Filter pressing is inferred to play a major role in magma fractionation at shallow depths (<10 km) by moving melt and gas relative to the solid, crystalline framework. However, the magmatic conditions at which this process operates remain poorly constrained. We present novel experimental data that illustrate how the crystal content of the mush affects the ability of gas-driven filter pressing to segregate melt. Hydrous haplogranite (2.1 wt% water in the melt) and dacite (4.2 wt% water in the melt) crystal mushes, with a wide range of crystallinities (34–80 vol% crystals), were investigated using in-situ, high-temperature (500–800 °C) synchrotron X-ray tomographic microscopy with high spatial (3 μm/pixel) and temporal resolution (∼8 s per three-dimensional data set). Our experimental results show that gas-driven filter pressing operates only below the maximum packing of bubbles and crystals (∼74 vol%). Above this threshold, the mush tends to fracture and gas escapes via fractures. Therefore, the efficiency of gas-driven filter pressing is promoted close to the percolation threshold and in situations where a mush inflates slowly relative to build-up of pressure and expulsion of melt. Such observations offer a likely explanation for the production of eruptible, crystal-poor magmas within Earth’s crust.


Geophysics | 2013

Synchrotron-based X-ray tomographic microscopy for rock physics investigations

Claudio Madonna; Beatriz Quintal; Marcel Frehner; Bjarne S. G. Almqvist; Nicola Tisato; Mattia Pistone; Federica Marone; Erik H. Saenger

ABSTRACTSynchrotron radiation X-ray tomographic microscopy is a nondestructive method providing ultra-high-resolution 3D digital images of rock microstructures. We describe this method and, to demonstrate its wide applicability, we present 3D images of very different rock types: Berea sandstone, Fontainebleau sandstone, dolomite, calcitic dolomite, and three-phase magmatic glasses. For some samples, full and partial saturation scenarios are considered using oil, water, and air. The rock images precisely reveal the 3D rock microstructure, the pore space morphology, and the interfaces between fluids saturating the same pore. We provide the raw image data sets as online supplementary material, along with laboratory data describing the rock properties. By making these data sets available to other research groups, we aim to stimulate work based on digital rock images of high quality and high resolution. We also discuss and suggest possible applications and research directions that can be pursued on the basis o...


Journal of Geophysical Research | 2014

Strain‐induced outgassing of three‐phase magmas during simple shear

J. K. Shields; Heidy M Mader; Mattia Pistone; Luca Caricchi; David Floess; Benita Putlitz

A major factor determining the explosivity of silicic eruptions is the removal of volatiles from magma through permeability-controlled outgassing. We studied the microstructural development of permeability during deformation of highly viscous magma by performing simple shear experiments on bubble (0.12–0.36 volume fraction) and crystal-bearing (0–0.42 volume fraction) silicate melts. Experiments were performed under torsion, at high temperature and pressure (723–873 K and 150–200 MPa) in a Paterson deformation apparatus at bulk shear strains between 0 and 10. The experimental setup allows for gas escape if bubble connectivity is reached on the sample periphery. Three-dimensional imaging and analysis of deformed bubbles was performed using X-ray tomography. The development of localized deformation in all samples, enhanced by crystal content, leads to brittle fracture at bulk strains > 2 and sample-wide fracturing in samples deformed to strains > 5. A decrease in both bubble fraction and dissolved volatile content with increasing strain, along with strain-hardening rheological behavior, suggests significant shear-induced outgassing through the fracture networks, applicable to shallow conduit degassing in magmas containing crystal fractions of 0–0.42. This study contributes to our understanding of highly viscous magma outgassing and processes governing the effusive-explosive transition.


Frontiers of Earth Science in China | 2015

The Viscous to Brittle Transition in Crystal- and Bubble-Bearing Magmas

Mattia Pistone; Benoit Cordonnier; Luca Caricchi; Peter Ulmer; Federica Marone

The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K) and high-pressure (200 MPa) conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1). During the experiments bubbles are deformed (i.e. capillary number are in excess of 1) enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65) and bubble volume fractions (0.09 to 0.12). The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44) promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a potential sudden transition to brittle behaviour, which could result in an explosive volcanic eruption.


American Mineralogist | 2017

Water transfer during magma mixing events: Insights into crystal mush rejuvenation and melt extraction processes

Mattia Pistone; Jon D Blundy; Richard A. Brooker

Abstract Many plutons preserve evidence of magma mixing between hydrous mafic magmas and resident felsic crystal-rich mushes. To investigate water transfer processes in such systems following thermal equilibration, we conducted 24 h experiments to establish the petrological evolution of a water-undersaturated (4 wt% H2O in the interstitial melt) quartz-bearing dacite crystal mush (0.5−0.8 in crystal fraction) intruded by a water-saturated (≥6 wt% H2O), initially crystal-free, andesite magma at 950 °C and 4 kbar (12 km depth). Our results show isothermal undercooling resulting from a change in liquidus temperatures of the interacting magmas due to their changing water content. Specifically, mafic samples dramatically crystallize during water escape into the felsic end-members and consequent increase in liquidus temperature. Conversely, the addition of water to the felsic mush reduces the liquidus temperature, leading to an increase in melt fraction. The experiments provide insights into how volatiles contribute to crystal mush rejuvenation (i.e., increase of melt fraction). However, H2O diffusion alone is not sufficient to promote melt extraction from short- and long-lived mushes in the Earth’s crust.


American Mineralogist | 2016

Petrogenesis of antecryst-bearing arc basalts from the Trans-Mexican Volcanic Belt: Insights into along-arc variations in magma-mush ponding depths, H2O contents, and surface heat flux

Georg F. Zellmer; Mattia Pistone; Yoshiyuki Iizuka; Benjamin J. Andrews; Arturo Gómez-Tuena; Susanne M. Straub; Elizabeth Cottrell

Abstract The Trans-Mexican Volcanic Belt (TMVB) is known for the chemical diversity in its erupted products. We have analyzed the olivine, pyroxene, and plagioclase mineral chemistry of 30 geochemically well-characterized mafic eruptives from Isla Maria at the western end of the arc to Palma Sola in the east. The mineral major oxide data indicate the dominance of open system processes such as antecryst uptake, and the scarcity of mineral-mineral and mineral-melt equilibria suggests that apart from forming microlites, erupted melts do not significantly crystallize during ascent. A combination of plagioclase antecryst chemistry and MELTS thermodynamic modeling of H2O-saturated isobaric fractional crystallization was employed to develop a pressure sensor aimed at determining the ponding depths of the co-genetic magmas from which the erupted plagioclase crystal assemblage originates. We show that the depth of magma-mush reservoirs increase eastward along the TMVB. We suggest that magma ponding is triggered by degassing-induced crystallization during magma ascent, and that the pressure sensor can also be regarded as a degassing sensor, with more hydrous melts beginning to degas at greater depths.Modeled initial magma H2O contents at the Moho range from ~4 to ~9 wt%. Magma-mush ponding depth variations fully explain the observed westward increase of average surface heat flux along the TMVB, supporting a new model of mafic arc magma ascent, where rapidly rising, initially aphyric melts pick up their antecrystic crystal cargo from a restricted crustal depth range, in which small unerupted batches of previously risen co-genetic magmas typically stall and solidify. This implies that, globally, mafic arc magmas may be used to constrain the depths of degassing and mush zone formation, as well as the amount of H2O in the primary melts.


Journal of Geophysical Research | 2012

Deformation experiments of bubble‐ and crystal‐bearing magmas: Rheological and microstructural analysis

Mattia Pistone; Luca Caricchi; Peter Ulmer; Luigi Burlini; P. Ardia; Eric Reusser; Federica Marone; Laurent Arbaret


Bulletin of Volcanology | 2011

Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts

Luca Caricchi; Anne Pommier; Mattia Pistone; Jonathan M. Castro; Alain Burgisser; Diego Perugini


Geophysics | 2013

Synchrotron-based X-ray tomographic microscopy for rock physics investigationsSynchrotron-based rock images

Claudio Madonna; Beatriz Quintal; Marcel Frehner; Bjarne S. G. Almqvist; Nicola Tisato; Mattia Pistone; Federica Marone; Erik H. Saenger


Chemical Geology | 2013

Rheology of volatile-bearing crystal mushes: Mobilization vs. viscous death

Mattia Pistone; Luca Caricchi; Peter Ulmer; Eric Reusser; P. Ardia

Collaboration


Dive into the Mattia Pistone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Ardia

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Cottrell

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge