Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattia Riondato is active.

Publication


Featured researches published by Mattia Riondato.


Cell Cycle | 2013

Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer

Cecilia Marini; Barbara Salani; Michela Massollo; Adriana Amaro; Alessia Isabella Esposito; Anna Maria Orengo; Selene Capitanio; Laura Emionite; Mattia Riondato; Gianluca Bottoni; Cinzia Massara; Simona Boccardo; Marina Fabbi; Cristina Campi; Silvia Ravera; Giovanna Angelini; Silvia Morbelli; Michele Cilli; Renzo Cordera; Mauro Truini; Davide Maggi; Ulrich Pfeffer; Gianmario Sambuceti

Emerging evidence suggests that metformin, a widely used anti-diabetic drug, may be useful in the prevention and treatment of different cancers. In the present study, we demonstrate that metformin directly inhibits the enzymatic function of hexokinase (HK) I and II in a cell line of triple-negative breast cancer (MDA-MB-231). The inhibition is selective for these isoforms, as documented by experiments with purified HK I and II as well as with cell lysates. Measurements of 18F-fluoro-deoxyglycose uptake document that it is dose- and time-dependent and powerful enough to virtually abolish glucose consumption despite unchanged availability of membrane glucose transporters. The profound energetic imbalance activates phosphorylation and is subsequently followed by cell death. More importantly, the “in vivo” relevance of this effect is confirmed by studies of orthotopic xenografts of MDA-MB-231 cells in athymic (nu/nu) mice. Administration of high drug doses after tumor development caused an evident tumor necrosis in a time as short as 48 h. On the other hand, 1 mo metformin treatment markedly reduced cancer glucose consumption and growth. Taken together, our results strongly suggest that HK inhibition contributes to metformin therapeutic and preventive potential in breast cancer.


The Journal of Nuclear Medicine | 2013

Metformin Temporal and Localized Effects on Gut Glucose Metabolism Assessed Using 18F-FDG PET in Mice

Michela Massollo; Cecilia Marini; Massimo Brignone; Laura Emionite; Barbara Salani; Mattia Riondato; Selene Capitanio; Francesco Fiz; Alessia Democrito; Adriana Amaro; Silvia Morbelli; Michele Piana; Davide Maggi; Michele Cilli; Ulrich Pfeffer; Gianmario Sambuceti

In the course of metformin treatment, staging abdominal cancer lesions with 18F-FDG PET images is often hindered by the presence of a high bowel radioactivity. The present study aimed to verify the mechanism underlying this phenomenon. Methods: Fifty-three mice were submitted to dynamic acquisitions of 18F-FDG kinetics under fasting conditions. Three small-animal PET scans were obtained over a 4-mo study period. The animals were subdivided into 4 groups according to the following metformin administration protocol: group 1, untreated mice (n = 15); group 2, mice exposed to metformin treatment (750 mg/kg/d) for the 48 h before each PET study (pulsed, n = 10); group 3, mice treated for the whole study period (prolonged, n = 10); and group 4, mice in which prolonged treatment was interrupted 48 h before PET (interrupted, n = 8). The rate constant of 18F-FDG uptake was estimated by Patlak analysis. At the end of the study, the ileum and colon were harvested, washed, and counted ex vivo. Two further groups, of 5 animals each, were included to evaluate the effect of prolonged metformin treatment on phosphorylated adenosine monophosphate (AMP)–activated protein kinase (pAMPK) form and gene expression for thioredoxin-interacting protein (TXNIP). Results: Pulsed treatment did not modify gut tracer retention with respect to the untreated group. Conversely, prolonged treatment induced a progressive increase in 18F-FDG uptake that selectively involved the colonic wall, without any significant contamination of bowel content. This effect persisted after a complete drug washout in the interrupted group. These responses were paralleled by increased pAMPK availability and by reduced expression of TXNIP messenger RNA in colonic enterocytes exposed to prolonged metformin treatment. Conclusion: Metformin causes a selective increase in colonic 18F-FDG uptake. This effect appears after a relatively long period of treatment and persists soon after drug washout. Accordingly, the increased bowel glucose metabolism reflects a biologic response to chronic metformin treatment characterized by increased levels of pAMPK and reduced levels of TXNIP.


The Journal of Nuclear Medicine | 2015

18F-NaF Uptake by Atherosclerotic Plaque on PET/CT Imaging: Inverse Correlation Between Calcification Density and Mineral Metabolic Activity

Francesco Fiz; Silvia Morbelli; Arnoldo Piccardo; Matteo Bauckneht; Giulia Ferrarazzo; Emanuela Pestarino; Manlio Cabria; Alessia Democrito; Mattia Riondato; Giampiero Villavecchia; Cecilia Marini; Gianmario Sambuceti

Several studies have highlighted the role of vascular 18F-NaF uptake as a marker of ongoing calcium deposition. However, accumulation of 18F-NaF is often inconsistent with localization of arterial plaque. Calcification activity and thus 18F-NaF uptake might prevail in the earlier plaque stages. To test this hypothesis, we evaluated 18F-NaF uptake in plaque of 3 different densities, using density as a marker of calcification progression. We also tested whether attenuation-weighted image reconstruction affects 18F-NaF uptake in the different plaque stages. Methods: Sixty-four oncologic patients (14 men and 50 women; mean age, 65.3 ± 8.2 y; range, 26–81 y) underwent 18F-NaF PET/CT. A volume of interest was drawn on each plaque within the infrarenal aorta to assess mean standardized uptake value and attenuation (in Hounsfield units [HU]). Plaque was then categorized as light (<210 HU), medium (211–510 HU), or heavy (>510 HU). Standardized uptake value was normalized for blood 18F-NaF activity to obtain the plaque target-to-background ratio (TBR). During this process, several focal, noncalcified areas of 18F-NaF were identified (hot spots). The TBR of the hot spots was computed after isocontour thresholding. The TBR of a noncalcified control region was also calculated. In 35 patients, the TBR of non–attenuation-corrected images was calculated. Results: The average TBR was highest in light plaque (2.21 ± 0.88), significantly lower in medium plaque (1.59 ± 0.63, P < 0.001), and lower still in heavy plaque (1.14 ± 0.37, P < 0.0001 with respect to both light and medium plaque). The TBR of the control region was not significantly different from that of heavy plaque but was significantly lower than that of light and medium plaque (P < 0.01). Hot spots had the highest absolute TBR (3.89 ± 1.87, P < 0.0001 vs. light plaque). TBRs originating from non–attenuation-corrected images did not significantly differ from those originating from attenuation-corrected images. Conclusion: Our results support the concept that 18F-NaF is a feasible option in imaging molecular calcium deposition in the early stages of plaque formation, when active uptake mechanisms are the main determinants of calcium presence, but that retention of 18F-NaF progressively decreases with increasing calcium deposition in the arterial wall. Our data suggest that non–attenuation-corrected reconstruction does not significantly affect evaluation of plaque of any thickness.


European Journal of Nuclear Medicine and Molecular Imaging | 2017

PET and PET/CT with radiolabeled choline in prostate cancer: a critical reappraisal of 20 years of clinical studies

Giampiero Giovacchini; Elisabetta Giovannini; Rossella Leoncini; Mattia Riondato; Andrea Ciarmiello

We here aim to provide a comprehensive and critical review of the literature concerning the clinical applications of positron emission tomography/computed tomography (PET/CT) with radiolabeled choline in patients with prostate cancer (PCa). We will initially briefly summarize the historical context that brought to the synthesis of [11C]choline, which occurred exactly 20 years ago. We have arbitrarily grouped the clinical studies in three different periods, according to the year in which they were published and according to their relation with their applications in urology, radiotherapy and oncology. Studies at initial staging and, more extensively, studies in patients with biochemical failure, as well as factors predicting positive PET/CT will be reviewed. The capability of PET/CT with radiolabeled choline to provide prognostic information on PCa-specific survival will also be examined. The last sections will be devoted to the use of radiolabeled choline for monitoring the response to androgen deprivation therapy, radiotherapy, and chemotherapy. The accuracy and the limits of the technique will be discussed according to the information available from standard validation processes, including biopsy or histology. The clinical impact of the technique will be discussed on the basis of changes induced in the management of patients and in the evaluation of the response to therapy. Current indications to PET/CT, as officially endorsed by guidelines, or as routinely performed in the clinical practice will be illustrated. Emphasis will be made on methodological factors that might have influenced the results of the studies or their interpretation. Finally, we will briefly highlight the potential role of positron emission tomography/magnetic resonance and of new radiotracers for PCa imaging.


The Journal of Nuclear Medicine | 2018

Small-Animal 18F-FDG PET for Research on Octopus vulgaris: Applications and Future Directions in Invertebrate Neuroscience and Tissue Regeneration

Letizia Zullo; Ambra Buschiazzo; Michela Massollo; Mattia Riondato; Alessia Democrito; Cecilia Marini; Fabio Benfenati; Gianmario Sambuceti

This study aimed to develop a method of administering 18F-FDG to the common octopus in order to perform a PET biodistribution assay characterizing glucose metabolism in organs and regenerating tissues. Methods: Seven animals (two of which had a regenerating arm) were anesthetized with 3.7% MgCl2 in artificial seawater and then injected with 18–30 MBq of isosmotic 18F-FDG through either the left branchial heart or the anterior vena cava. After an uptake time of about 50 min, the animals were sacrificed and placed on the bed of a small-animal PET scanner, and 10-min static acquisitions were obtained at 3–4 bed positions to visualize the entire body. To confirm image interpretation, internal organs of interest were collected and counted with a γ-counter. Results: Administration through the anterior vena cava resulted in a good full-body distribution of 18F-FDG as seen on the PET images. Uptake was high in the mantle mass and relatively lower in the arms. In particular, the brain, optic lobes, and arms were clearly identified and were measured for their uptake (SUVmax: 6.57 ± 1.86, 7.59 ± 1.66, and 1.12 ± 0.06, respectively). Interestingly, 18F-FDG uptake was up to 3-fold higher in the highly proliferating areas of regenerating arms. Conclusion: This study represents a stepping-stone to the use of noninvasive functional techniques for addressing questions about invertebrate neuroscience and regenerative medicine.


European Journal of Nuclear Medicine and Molecular Imaging | 2018

Amyloid burden identifies neuropsychological phenotypes at increased risk of progression to Alzheimer’s disease in mild cognitive impairment patients

Andrea Ciarmiello; Antonio Tartaglione; Elisabetta Giovannini; Mattia Riondato; Giampiero Giovacchini; Ornella Ferrando; Marina De Biasi; Chiara Passera; Elena Carabelli; Antonio Mannironi; Franca Foppiano; Bruno Alfano; Luigi Mansi

PurposeThe extent of amyloid burden associated with cognitive impairment in amnestic mild cognitive impairment is unknown. The primary aim of the study was to determine the extent to which amyloid burden is associated to the cognitive impairment. The secondary objective was to test the relationship between amyloid accumulation and memory or cognitive impairment.Materials and methodsIn this prospective study 66 participants with amnestic mild cognitive impairment underwent clinical, neuropsychological and PET amyloid imaging tests. Composite scores assessing memory and non-memory domains were used to identify two clinical classes of neuropsychological phenotypes expressing different degree of cognitive impairment. Detection of amyloid status and definition of optimal amyloid ± cutoff for discrimination relied on unsupervised k-means clustering method.ResultsThreshold for identifying low and high amyloid retention groups was of SUVr = 1.3. Aß + participants showed poorer global cognitive and episodic memory performance than subjects with low amyloid deposition. Aß positivity significantly identified individuals with episodic memory impairment with a sensitivity and specificity of 80 and 79%, (χ2 = 21.48; P < 0.00001). Positive and negative predictive values were 82 and 76%, respectively. Amyloid deposition increased linearly as function of memory impairment with a rate of 0.13/ point of composite memory score (R = −44, P = 0.0003).ConclusionThe amyloid burden of SUVr = 1.3 allows early identification of subjects with episodic memory impairment which might predict progression from MCI to Alzheimer’s disease.Trial registrationEudraCT 2015-001184-39.


PLOS ONE | 2013

Use of the Uteroglobin Platform for the Expression of a Bivalent Antibody against Oncofetal Fibronectin in Escherichia coli

Elisa Ventura; Mattia Riondato; Gianmario Sambuceti; Annalisa Salis; Gianluca Damonte; Cinzia Cordazzo; Hüseyin Besir; Vito Pistoia; Luciano Zardi

Escherichia coli is a robust, economic and rapid expression system for the production of recombinant therapeutic proteins. However, the expression in bacterial systems of complex molecules such as antibodies and fusion proteins is still affected by several drawbacks. We have previously described a procedure based on uteroglobin (UG) for the engineering of very soluble and stable polyvalent and polyspecific fusion proteins in mammalian cells (Ventura et al. 2009. J. Biol. Chem. 284∶26646–26654.) Here, we applied the UG platform to achieve the expression in E. coli of a bivalent human recombinant antibody (L19) toward the oncofetal fibronectin (B-FN), a pan-tumor target. Purified bacterial L19-UG was highly soluble, stable, and, in all molecules, the L19 moiety maintained its immunoreactivity. About 50–70% of the molecules were covalent homodimer, however after refolding with the redox couple reduced-glutathione/oxidized-glutathione (GSH/GSSG), 100% of molecules were covalent dimers. Mass spectrometry studies showed that the proteins produced by E. coli and mammalian cells have an identical molecular mass and that both proteins are not glycosylated. L19-UG from bacteria can be freeze-dried without any loss of protein and immunoreactivity. In vivo, in tumor-bearing mice, radio-iodinated L19-UG selectively accumulated in neoplastic tissues showing the same performance of L19-UG from mammalian cells. The UG-platform may represent a general procedure for production of various biological therapeutics in E. coli.


European Journal of Nuclear Medicine and Molecular Imaging | 2012

Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study

Cecilia Marini; Silvia Morbelli; Riccardo Armonino; Giovanni Spinella; Mattia Riondato; Michela Massollo; Francesca Sarocchi; Bianca Pane; Carla Augeri; Luca Abete; Giorgio Ghigliotti; Daniela Palmieri; Francesco Fiz; Giuseppe Cittadini; Ezio Fulcheri; Domenico Palombo; Gianmario Sambuceti


Quarterly Journal of Nuclear Medicine and Molecular Imaging | 2014

Systemic vascular inflammation in abdominal aortic aneurysm patients: A contrast-enhanced PET/CT study

Silvia Morbelli; Giorgio Ghigliotti; Giovanni Spinella; Cecilia Marini; Irene Bossert; Marco A. Cimmino; Bianca Pane; Nikolaos Rousas; Giuseppe Cittadini; Michela Massollo; Dario Camellino; Mattia Riondato; Domenico Palombo; Chiara Barisione; Gianmario Sambuceti


Journal of Diagnostic Imaging in Therapy | 2017

MR-Based Attenuation Correction in Brain PET/MR Studies: A Short Review

Elisabetta Giovannini; Giampiero Giovacchini; Stefania Nicolosi; Mattia Riondato; Andrea Ciarmiello

Collaboration


Dive into the Mattia Riondato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Ciarmiello

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Elisabetta Giovannini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge