Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Md. Maidul Islam is active.

Publication


Featured researches published by Md. Maidul Islam.


Journal of Physical Chemistry B | 2009

Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides.

Md. Maidul Islam; Sebanti Roy Chowdhury; Gopinatha Suresh Kumar

The interaction of two natural protoberberine plant alkaloids berberine and palmatine and a synthetic derivative coralyne to three double stranded ribonucleic acids, poly(A). poly(U), poly(I).poly(C) and poly(C).poly(G) was studied using various biophysical techniques. Absorbance and fluorescence studies showed that the alkaloids bound cooperatively to these RNAs with the binding affinities of the order 10(4) M(-1). Circular dichroic results suggested that the conformation of poly(A). poly(U) was perturbed by all the three alkaloids, that of poly(I).poly(C) by coralyne only and that of poly(C).poly(G) by none. Fluorescence quenching studies gave evidence for partial intercalation of berberine and palmatine and complete intercalation of coralyne to these RNA duplexes. Isothermal titration calorimetric studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived were in agreement with the overall binding affinity from spectral data. The binding of all the three alkaloids considerably stabilized the melting of poly(A). poly(U) and poly(I).poly(C) and the binding data evaluated from the melting data were in agreement with that obtained from other techniques. The overall binding affinity of the alkaloids to these double stranded RNAs varied in the order, berberine = palmatine < coralyne. The temperature dependence of the enthalpy changes afforded large negative values of heat capacity changes for the binding of palmatine and coralyne to poly(A).poly(U) and of coralyne to poly(I).poly(C), suggesting substantial hydrophobic contribution in the binding process. Further, enthalpy-entropy compensation was also seen in almost all the systems that showed binding. These results further advance our understanding on the binding of small molecules that are specific binders to double stranded RNA sequences.


DNA and Cell Biology | 2009

RNA-Binding Potential of Protoberberine Alkaloids: Spectroscopic and Calorimetric Studies on the Binding of Berberine, Palmatine, and Coralyne to Protonated RNA Structures

Md. Maidul Islam; Gopinatha Suresh Kumar

Interaction of the protoberberine alkaloids berberine, palmatine, and coralyne with the two double-stranded RNA homopolymers of cytidine-guanosine (CG) and inosine-cytidine (IC) sequences in the protonated conformation was investigated using various biophysical techniques. All the three alkaloids bound polyC(+)G in a cooperative way. The binding of coralyne to both the polyribonucleotides was stronger than that of berberine and palmatine. Evidence for the intercalative binding of coralyne was revealed from fluorescence quenching studies. Isothermal titration calorimetry results suggested that the binding of berberine to both the polymers and palmatine to polyIC(+) was very weak while that of palmatine and coralyne to polyC(+)G and polyIC(+) was predominantly entropy driven. Circular dichroic results provided evidence for the perturbation of the RNA conformation with the bound coralyne in a more deeply intercalated position compared to berberine and palmatine as revealed by induced circular dichroism peaks. Taken together, the present study suggests that planarity of coralyne results in a more favorable and stronger binding to the double-stranded RNA conformations compared to berberine and palmatine that may potentiate its use in RNA-targeted drug design.


Journal of Physical Chemistry B | 2014

Thermodynamic Study of Rhodamine 123-Calf Thymus DNA Interaction: Determination of Calorimetric Enthalpy by Optical Melting Study

Abdulla Al Masum; Maharudra Chakraborty; Prateek Pandya; Umesh Chandra Halder; Md. Maidul Islam; Subrata Mukhopadhyay

In this paper, the interaction of rhodamine123 (R123) with calf thymus DNA has been studied using molecular modeling and other biophysical methods like UV-vis spectroscopy, fluoremetry, optical melting, isothermal titration calorimetry, and circular dichroic studies. Results showed that the binding energy is about -6 to -8 kcal/mol, and the binding process is favored by both negative enthalpy change and positive entropy change. A new method to determine different thermodynamic properties like calorimetric enthalpy and heat capacity change has been introduced in this paper. The obtained data has been crossed-checked by other methods. After dissecting the free-energy contribution, it was observed that the binding was favored by both negative hydrophobic free energy and negative molecular free energy which compensated for the positive free energies due to the conformational change loss of rotational and transitional freedom of the DNA helix.


Journal of Physical Chemistry B | 2010

DNA Binding Ability and Hydrogen Peroxide Induced Nuclease Activity of a Novel Cu(II) Complex with Malonate as the Primary Ligand and Protonated 2-Amino-4-picoline as the Counterion †

Biswarup Saha; Md. Maidul Islam; Susmita Paul; Saheli Samanta; Shayoni Ray; Chitta Ranjan Santra; Somnath Ray Choudhury; Biswajit Dey; Amrita Das; Somnath Ghosh; Subrata Mukhopadhyay; Gopinatha Suresh Kumar; Parimal Karmakar

The DNA binding property of a Cu(II) complex, viz., [Cu(mal)(2)](picH)(2).2H(2)O, (mal)(2) = malonic acid, picH = protonated 2-amino-4-picoline, has been investigated in this study. The binding of this complex with plasmid and chromosomal DNA has been characterized by different biophysical techniques. From the absorption and fluorescence spectroscopic studies, it has been observed that the said copper complex binds strongly with pUC19 plasmid and CT DNA with a binding affinity of 2.368 x 10(3) and 4.0 x 10(3) M(-1), respectively, in 10 mM citrate-phosphate buffer, pH 7.4. Spectrofluorimetric studies reveal that the copper complex exhibits partial DNA intercalation as well as partial DNA minor groove binding properties. Consequently, in agarose gel electrophoresis study, it has been observed that the complex alone induces positive supercoiling in plasmid DNA while in the presence of H(2)O(2) it exhibits nuclease activity. The induction of the breakage in DNA backbone depends upon the relative concentrations of H(2)O(2) and copper complex followed by the time of incubation with DNA. Optical DNA melting study, isothermal titration calorimetry, and absorption spectroscopy have been used to characterize the nuclease activity of this complex in the presence of H(2)O(2). Further, (1)H NMR study indicates that Cu(II) in the complex is converted into the Cu(I) state by the reduction of H(2)O(2). Finally, agarose gel electrophoresis study with different radical scavengers concludes that the production of both hydroxyl radicals and reactive oxygen species is responsible for this nuclease activity.


Molecular Diversity | 2017

A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions

Nazia Kausar; Abdulla Al Masum; Md. Maidul Islam; Asish R. Das

A catalyst-free green methodology for the synthesis of pharmacologically important spirooxindole derivatives has been developed by a three-component domino reaction between isatin, various amino compounds, and 1,3-dicarbonyl or 3-phenylisoxazolone compounds in ethyl l-lactate medium at room temperature. This new efficient synthetic method facilitated the formation of a wide range of biologically significant spirooxindole derivatives (including 17 new spirooxindoles) under very mild conditions. The cytotoxic activity of one of the isoxazole-fused spirooxindoles was evaluated in MDA-MB 468 breast cancer cell line. It was found that cell survivability decreases with increasing concentration of the selected compound in MDA-MB 468 breast cancer cells.


RSC Advances | 2016

Interaction of a synthesized pyrene based fluorescent probe with CT-DNA: spectroscopic, thermodynamic and molecular modeling studies

Soumen Ghosh; Abdulla Al Masum; Aniruddha Ganguly; Md. Akhtarul Alam; Md. Maidul Islam; Nikhil Guchhait

The present study demonstrates the synthesis of a new pyrene based water soluble fluorescent probe and its interaction with Calf-thymus DNA. The interaction has been studied using various biophysical methods like absorption and fluorescence spectroscopy, optical melting, isothermal titration colorimetry and circular dichroic studies. Experimental results indicate the binding mode between the probe and DNA to be principally intercalative having a binding energy in the range of −7 to −8 kcal mol−1 and the binding process is favored by both negative enthalpy change and positive entropy change. A salt dependent study revealed that the binding is favored by both small ionic interaction and large nonionic interactions. All the data obtained from biophysical studies have been validated by a molecular modeling study.


Journal of Molecular Recognition | 2017

Molecular binding of toxic phenothiazinium derivatives, azures to bovine serum albumin: A comparative spectroscopic, calorimetric, and in silico study

Somnath Das; Md. Maidul Islam; Gopal Chandra Jana; Anirudha Patra; Pradeep K. Jha; Maidul Hossain

In this paper, the comparative binding behavior of antimalarial drug azure A, azure B and azure C with bovine serum albumin (BSA) has been studied. The interaction has been confirmed by multispectroscopic (UV, fluorescence, Fourier transform infrared (FT‐IR), and circular dichroism) and molecular docking techniques. The experimental results show that azure B has the highest BSA binding affinity followed by azure A and azure C. The experimental evidence of binding showed a static quenching mechanism in the interaction azures with BSA. The isothermal titration calorimetry result reveals that the binding was exothermic with positive entropy contribution in each case. The thermodynamic parameters ΔH, ΔG, and ΔS at 25°C were calculated, which indicates that the weak van der Waals forces and hydrogen bonding rather than the hydrophobic effect played an important role in the interaction. According to the theory of Förster nonradiative energy transfer, the distance (r) between the donor (BSA) and acceptor azures found to be <7 nm in all the case. The circular dichroism and FT‐IR studies show that the content of α‐helix structure has increased for the azures‐BSA system. Overall, experimental studies characterize the interaction dynamics and energetics of the binding of three toxic analogs towards the physiologically relevant serum albumins. We hope, the outcome of this work will be most helpful for synthesizing a new type of phenothiazinium derivatives of the better therapeutic application.


Journal of Biomolecular Structure & Dynamics | 2018

Elucidating the interaction of Spathodea campanulata leaf extracts mediated potential bactericidal gold nanoparticles with human serum albumin: spectroscopic analysis

Maidul Beg; Anukul Maji; Md. Maidul Islam; Maidul Hossain

Abstract Nanomaterials in different form have been thoroughly used in the area of pharmaceutics and medicine for drug delivery. The large scale of nanoparticles (NPs) synthesis from plant extract is much safe, cheap and eco-friendly. Here, we demonstrated a new, one-step, ultra-fast biosynthesis of gold nanoparticles (sc-AuNPs, 19.54 nm) by using aqueous Spathodea campanulata leaf extracts as a reducing and capping agent. And also, we presented the synthesis of citrate capped gold nanoparticles (cit-AuNPs) of approximately same size (19.66 nm). These two NPs were characterized by UV-Visible, dynamic light scattering, transmission electron microscope and energy dispersive X-ray spectroscopy. Fourier transform infrared spectroscopy confirmed that the functional groups like OH, NH, OH of COOH and CO were contributed in the sc-AuNPs formation. The negative zeta potential (−20.5, −22.8 mV) established the stability and dispersion of the sc- and cit-AuNPs. The anti-bacterial activity of the sc- and cit-AuNPs were checked against Escherichia coli (DH5-Alpha). Minimum inhibitory concentration was 2.4 and 3.0 nM, respectively for sc- and cit-AuNPs. The interaction study of the sc-AuNPs/cit-AuNPs-human serum albumin (HSA) system was done by UV-Visible absorbance, fluorescence, circular dichroism, time resolved fluorescence spectroscopy and the measurement of zeta potential. Absorbance, three dimensional fluorescence, synchronous fluorescence and circular dichroism spectroscopy showed a minor conformational change of HSA upon interaction with the sc-AuNPs compared to cit-AuNPs. The present comparative study will advance our knowledge about the binding mode, mechanism and conformational change of the protein upon interaction with green synthesized sc-AuNPs and cit-AuNPs. Communicated by Ramaswamy H. Sarma


Journal of Photochemistry and Photobiology B-biology | 2016

Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies

Abdulla Al Masum; Maharudra Chakraborty; Soumen Ghosh; Dipranjan Laha; Parimal Karmakar; Md. Maidul Islam; Subrata Mukhopadhyay

Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 106M-1. Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen.


Dyes and Pigments | 2013

Binding of DNA with Rhodamine B: Spectroscopic and molecular modeling studies

Md. Maidul Islam; Maharudra Chakraborty; Prateek Pandya; Abdulla Al Masum; Neelima Gupta; Subrata Mukhopadhyay

Collaboration


Dive into the Md. Maidul Islam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gopinatha Suresh Kumar

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge