Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meejeon Roh is active.

Publication


Featured researches published by Meejeon Roh.


Oncogene | 2010

Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma.

Jie Wang; Jongchan Kim; Meejeon Roh; Omar E. Franco; Simon W. Hayward; Marcia L. Wills; Sarki A. Abdulkadir

The oncogenic PIM1 kinase has been implicated as a cofactor for c-MYC in prostate carcinogenesis. In this study, we show that in human prostate tumors, coexpression of c-MYC and PIM1 is associated with higher Gleason grades. Using a tissue recombination model coupled with lentiviral-mediated gene transfer we find that Pim1 is weakly oncogenic in naive adult mouse prostatic epithelium. However, it cooperates dramatically with c-MYC to induce prostate cancer within 6-weeks. Importantly, c-MYC/Pim1 synergy is critically dependent on Pim1 kinase activity. c-MYC/Pim1 tumors showed increased levels of the active serine-62 (S62) phosphorylated form of c-MYC. Grafts expressing a phosphomimetic c-MYCS62D mutant had higher rates of proliferation than grafts expressing wild type c-MYC but did not form tumors like c-MYC/Pim1 grafts, indicating that Pim1 cooperativity with c-MYC in vivo involves additional mechanisms other than enhancement of c-MYC activity by S62 phosphorylation. c-MYC/Pim1-induced prostate carcinomas show evidence of neuroendocrine (NE) differentiation. Additional studies, including the identification of tumor cells coexpressing androgen receptor and NE cell markers synaptophysin and Ascl1 suggested that NE tumors arose from adenocarcinoma cells through transdifferentiation. These results directly show functional cooperativity between c-MYC and PIM1 in prostate tumorigenesis in vivo and support efforts for targeting PIM1 in prostate cancer.


BMC Cancer | 2010

Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity

Jongchan Kim; Meejeon Roh; Sarki A. Abdulkadir

BackgroundThe serine/threonine kinase PIM1 has been implicated as an oncogene in various human cancers including lymphomas, gastric, colorectal and prostate carcinomas. In mouse models, Pim1 is known to cooperate with c-Myc to promote tumorigenicity. However, there has been limited analysis of the tumorigenic potential of Pim1 overexpression in benign and malignant human prostate cancer cells in vivo.MethodsWe overexpressed Pim1 in three human prostate cell lines representing different disease stages including benign (RWPE1), androgen-dependent cancer (LNCaP) and androgen-independent cancer (DU145). We then analyzed in vitro and in vivo tumorigenicity as well as the effect of Pim1 overexpression on c-MYC transcriptional activity by reporter assays and gene expression profiling using an inducible MYC-ER system. To validate that Pim1 induces tumorigenicity and target gene expression by modulating c-MYC transcriptional activity, we inhibited c-MYC using a small molecule inhibitor (10058-F4) or RNA interference.ResultsOverexpression of Pim1 alone was not sufficient to convert the benign RWPE1 cell to malignancy although it enhanced their proliferation rates when grown as xenografts in vivo. However, Pim1 expression enhanced the in vitro and in vivo tumorigenic potentials of the human prostate cancer cell lines LNCaP and DU145. Reporter assays revealed increased c-MYC transcriptional activity in Pim1-expressing cells and mRNA expression profiling demonstrated that a large fraction of c-MYC target genes were also regulated by Pim1 expression. The c-MYC inhibitor 10058-F4 suppressed the tumorigenicity of Pim1-expressing prostate cancer cells. Interestingly, 10058-F4 treatment also led to a reduction of Pim1 protein but not mRNA. Knocking-down c-MYC using short hairpin RNA reversed the effects of Pim1 on Pim1/MYC target genes.ConclusionOur results suggest an in vivo role of Pim1 in promoting prostate tumorigenesis although it displayed distinct oncogenic activities depending on the disease stage of the cell line. Pim1 promotes tumorigenicity at least in part by enhancing c-MYC transcriptional activity. We also made the novel discovery that treatment of cells with the c-MYC inhibitor 10058-F4 leads to a reduction in Pim1 protein levels.


PLOS Genetics | 2009

Interactions between Cells with Distinct Mutations in c-MYC and Pten in Prostate Cancer

Jongchan Kim; Isam Eltoum; Meejeon Roh; Jie Wang; Sarki A. Abdulkadir

In human somatic tumorigenesis, mutations are thought to arise sporadically in individual cells surrounded by unaffected cells. This contrasts with most current transgenic models where mutations are induced synchronously in entire cell populations. Here we have modeled sporadic oncogene activation using a transgenic mouse in which c-MYC is focally activated in prostate luminal epithelial cells. Focal c-MYC expression resulted in mild pathology, but prostate-specific deletion of a single allele of the Pten tumor suppressor gene cooperated with c-MYC to induce high grade prostatic intraepithelial neoplasia (HGPIN)/cancer lesions. These lesions were in all cases associated with loss of Pten protein expression from the wild type allele. In the prostates of mice with concurrent homozygous deletion of Pten and focal c-MYC activation, double mutant (i.e. c-MYC+;Pten-null) cells were of higher grade and proliferated faster than single mutant (Pten-null) cells within the same glands. Consequently, double mutant cells outcompeted single mutant cells despite the presence of increased rates of apoptosis in the former. The p53 pathway was activated in Pten-deficient prostate cells and tissues, but c-MYC expression shifted the p53 response from senescence to apoptosis by repressing the p53 target gene p21Cip1. We conclude that c-MYC overexpression and Pten deficiency cooperate to promote prostate tumorigenesis, but a p53-dependent apoptotic response may present a barrier to further progression. Our results highlight the utility of inducing mutations focally to model the competitive interactions between cell populations with distinct genetic alterations during tumorigenesis.


Journal of Clinical Investigation | 2012

Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis

Philip D. Anderson; Sydika A. McKissic; Monica Logan; Meejeon Roh; Omar E. Franco; Jie Wang; Irina Doubinskaia; Riet van der Meer; Simon W. Hayward; Christine M. Eischen; Isam Eldin Eltoum; Sarki A. Abdulkadir

Cooperativity between oncogenic mutations is recognized as a fundamental feature of malignant transformation, and it may be mediated by synergistic regulation of the expression of pro- and antitumorigenic target genes. However, the mechanisms by which oncogenes and tumor suppressors coregulate downstream targets and pathways remain largely unknown. Here, we used ChIP coupled to massively parallel sequencing (ChIP-seq) and gene expression profiling in mouse prostates to identify direct targets of the tumor suppressor Nkx3.1. Further analysis indicated that a substantial fraction of Nkx3.1 target genes are also direct targets of the oncoprotein Myc. We also showed that Nkx3.1 and Myc bound to and crossregulated shared target genes in mouse and human prostate epithelial cells and that Nkx3.1 could oppose the transcriptional activity of Myc. Furthermore, loss of Nkx3.1 cooperated with concurrent overexpression of Myc to promote prostate cancer in transgenic mice. In human prostate cancer patients, dysregulation of shared NKX3.1/MYC target genes was associated with disease relapse. Our results indicate that NKX3.1 and MYC coregulate prostate tumorigenesis by converging on, and crossregulating, a common set of target genes. We propose that coregulation of target gene expression by oncogenic/tumor suppressor transcription factors may represent a general mechanism underlying the cooperativity of oncogenic mutations during tumorigenesis.


PLOS ONE | 2008

A Role for Polyploidy in the Tumorigenicity of Pim-1-Expressing Human Prostate and Mammary Epithelial Cells

Meejeon Roh; Omar E. Franco; Simon W. Hayward; Riet van der Meer; Sarki A. Abdulkadir

Background Polyploidy is a prominent feature of many human cancers, and it has long been hypothesized that polyploidy may contribute to tumorigenesis by promoting genomic instability. In this study, we investigated whether polyploidy per se induced by a relevant oncogene can promote genomic instability and tumorigenicity in human epithelial cells. Principal Findings When the oncogenic serine-threonine kinase Pim-1 is overexpressed in immortalized, non-tumorigenic human prostate and mammary epithelial cells, these cells gradually converted to polyploidy and became tumorigenic. To assess the contribution of polyploidy to tumorigenicity, we obtained sorted, matched populations of diploid and polyploid cells expressing equivalent levels of the Pim-1 protein. Spectral karyotyping revealed evidence of emerging numerical and structural chromosomal abnormalities in polyploid cells, supporting the proposition that polyploidy promotes chromosomal instability. Polyploid cells displayed an intact p53/p21 pathway, indicating that the viability of polyploid cells in this system is not dependent on the inactivation of the p53 signaling pathway. Remarkably, only the sorted polyploid cells were tumorigenic in vitro and in vivo. Conclusions Our results support the notion that polyploidy can promote chromosomal instability and the initiation of tumorigenesis in human epithelial cells.


Oncogene | 2012

Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells

Jie Wang; Philip D. Anderson; Weifeng Luo; David Gius; Meejeon Roh; Sarki A. Abdulkadir

PIM1 kinase and MYC are commonly co-expressed in human prostate cancer and synergize to induce rapidly progressing prostate cancer in mouse models. Deficiency of the Pim kinase genes is well tolerated in vivo, suggesting that PIM1 inhibition might offer an attractive therapeutic modality for prostate cancer, particularly for MYC-expressing tumors. Here we examine the molecular consequences of Pim1 and MYC overexpression in the prostate as well as the effects of depleting Pim1 in prostate carcinoma cells with high levels of MYC. Overexpression of Pim1 in the mouse prostate induces several pro-tumorigenic genetic programs including cell cycle genes and Myc-regulated genes before the induction of any discernible pathology. Pim1 depletion by RNA interference in mouse and human prostate cancer cells decreased cellular proliferation, survival, Erk signaling and tumorigenicity even when MYC levels were not significantly altered. These results indicate that PIM1 may be necessary to maintain tumorigenicity, and further support efforts aimed at developing PIM1 inhibitors for prostate cancer therapy.


Oncogene | 2012

A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53

Jongchan Kim; Meejeon Roh; Irina Doubinskaia; Gabriela N. Algarroba; Isam-Eldin Eltoum; Sarki A. Abdulkadir

Human tumors are heterogeneous and evolve through a dynamic process of genetic mutation and selection. During this process, the effects of a specific mutation on the incipient cancer cell may dictate the nature of subsequent mutations that can be tolerated or selected for, affecting the rate at which subsequent mutations occur. Here we have used a new mouse model of prostate cancer that recapitulates several salient features of the human disease to examine the relative rates in which the remaining wild-type alleles of Pten and p53 tumor suppressor genes are lost. In this model, focal overexpression of c-MYC in a few prostate luminal epithelial cells provokes a mild proliferative response. In the context of compound Pten/p53 heterozygosity, c-MYC-initiated cells progress to prostatic intraepithelial neoplasia (mPIN) and adenocarcinoma lesions with marked heterogeneity within the same prostate glands. Using laser capture microdissection and gene copy number analyses, we found that the frequency of Pten loss was significantly higher than that of p53 loss in mPIN but not invasive carcinoma lesions. c-MYC overexpression, unlike Pten loss, did not activate the p53 pathway in transgenic mouse prostate cells, explaining the lack of selective pressure to lose p53 in the c-MYC-overexpressing cells. This model of heterogeneous prostate cancer based on alterations in genes relevant to the human disease may be useful for understanding pathogenesis of the disease and testing new therapeutic agents.


Molecular and Cellular Endocrinology | 2002

Streptozotocin, an O-GlcNAcase inhibitor, blunts insulin and growth hormone secretion

Kan Liu; Andrew J. Paterson; Robert J. Konrad; A. F. Parlow; Shiro Jimi; Meejeon Roh; Edward Chin; Jeffrey E. Kudlow

Type 2 diabetes mellitus results from a complex interaction between nutritional excess and multiple genes. Whereas pancreatic beta-cells normally respond to glucose challenge by rapid insulin release (first phase insulin secretion), there is a loss of this acute response in virtually all of the type 2 diabetes patients with significant fasting hyperglycemia. Our previous studies demonstrated that irreversible intracellular accumulation of a glucose metabolite, protein O-linked N-acetylglucosamine modification (O-GlcNAc), is associated with pancreatic beta-cell apoptosis. In the present study, we show that streptozotocin (STZ), a non-competitive chemical blocker of O-GlcNAcase, induces an insulin secretory defect in isolated rat islet cells. In contrast, transgenic mice with down-regulated glucose to glucosamine metabolism in beta-cells exhibited an enhanced insulin secretion capacity. Interestingly, the STZ blockade of O-GlcNAcase activity is also associated with a growth hormone secretory defect and impairment of intracellular secretory vesicle trafficking. These results provide evidence for the roles of O-GlcNAc in the insulin secretion and possible involvement of O-GlcNAc in general glucose-regulated hormone secretion pathways.


Journal of Biological Chemistry | 2005

Chromosomal instability induced by Pim-1 is passage-dependent and associated with dysregulation of cyclin B1.

Meejeon Roh; Chisu Song; Jongchan Kim; Sarki A. Abdulkadir

Overexpression of the oncogenic serine/threonine kinase Pim-1 has been shown to induce chromosomal missegregation and polyploidy in prostate epithelial cell lines (1). Here we demonstrated that Pim-1-induced polyploidy develops in a passage-dependent manner in culture consistent with a stochastic mode of progression. Induction of chromosomal instability by Pim-1 was not restricted to prostate cells as it was also observed in telomerase-immortalized normal human mammary epithelial cells. Elevated levels of cyclin B1 protein, but not its messenger RNA, were evident in early passage Pim-1 overexpressing cells, suggesting that increased cyclin B1 levels contribute to the development of polyploidy. Furthermore, regulation of cyclin B1 protein and cyclin B1/CDK1 activity after treatment with anti-microtubule agents was impaired. Small interfering RNA targeting cyclin B1 reversed the cytokinesis delay but not the mitotic checkpoint defect in Pim-1 overexpressing cells. These results indicated that chronic Pim-1 overexpression dysregulates cyclin B1 protein expression, which contributes to the development of polyploidy by delaying cytokinesis.


Journal of Cellular Physiology | 2012

Tumorigenic polyploid cells contain elevated ROS and ARE selectively targeted by antioxidant treatment.

Meejeon Roh; Riet van der Meer; Sarki A. Abdulkadir

Polyploidy has been linked to tumorigenicity mainly due to the chromosomal aberrations. Elevated reactive oxygen species (ROS) generation, on the other hand, has also been associated with oncogenic transformation in most cancer cells. However, a possible link between ploidy and ROS is largely unexplored. Here we have examined the role of ROS in the tumorigenicity of polyploid cells. We show that polyploid prostate and mammary epithelial cells contain higher levels of ROS due to their higher mitochondrial contents. ROS levels and mitochondrial mass are also higher in dihydrocytochalasin B (DCB)‐induced polyploid cells, suggesting that higher levels of ROS observed in polyploid cell can occur due to cytokinesis failure. Interestingly, polyploid cells were more sensitive to the inhibitory effect of the antioxidant, N‐Acetyl‐L‐cysteine (NAC), than control diploid cells. Treatment of polyploid/diploid cells with NAC led to the selective elimination of polyploid cells over time and abrogated the tumorigenicity of polyploid cells. This effect was partially mediated via the Akt signaling pathway. We next explored a possible role for ROS in promoting chromosomal instability by analyzing the effects of ROS on the mitotic stage of the cell cycle. Enhancing ROS levels by treating cells with hydrogen peroxide delayed not only entry into and but also exit from mitosis. Furthermore, increasing ROS levels significantly increased taxol resistance. Our results indicated that increased ROS in polyploid cells can contribute to tumorigenicity and highlight the therapeutic potential of antioxidants by selectively targeting the tumorigenic polyploid cells and by reversing taxol resistance. J. Cell. Physiol. 227: 801–812, 2012.

Collaboration


Dive into the Meejeon Roh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jongchan Kim

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Wang

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Chisu Song

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Omar E. Franco

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Paterson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Bernard D. Gary

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Edward Chin

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge