Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meenakshi Kaw is active.

Publication


Featured researches published by Meenakshi Kaw.


Journal of Clinical Investigation | 2011

Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes

Joseph P. Tiano; Viviane Delghingaro-Augusto; Cedric Le May; Suhuan Liu; Meenakshi Kaw; Saja S. Khuder; Martin G. Latour; Surabhi A. Bhatt; Kenneth S. Korach; Sonia M. Najjar; Marc Prentki; Franck Mauvais-Jarvis

The failure of pancreatic β cells to adapt to an increasing demand for insulin is the major mechanism by which patients progress from insulin resistance to type 2 diabetes (T2D) and is thought to be related to dysfunctional lipid homeostasis within those cells. In multiple animal models of diabetes, females demonstrate relative protection from β cell failure. We previously found that the hormone 17β-estradiol (E2) in part mediates this benefit. Here, we show that treating male Zucker diabetic fatty (ZDF) rats with E2 suppressed synthesis and accumulation of fatty acids and glycerolipids in islets and protected against β cell failure. The antilipogenic actions of E2 were recapitulated by pharmacological activation of estrogen receptor α (ERα) or ERβ in a rat β cell line and in cultured ZDF rat, mouse, and human islets. Pancreas-specific null deletion of ERα in mice (PERα-/-) prevented reduction of lipid synthesis by E2 via a direct action in islets, and PERα-/- mice were predisposed to islet lipid accumulation and β cell dysfunction in response to feeding with a high-fat diet. ER activation inhibited β cell lipid synthesis by suppressing the expression (and activity) of fatty acid synthase via a nonclassical pathway dependent on activated Stat3. Accordingly, pancreas-specific deletion of Stat3 in mice curtailed ER-mediated suppression of lipid synthesis. These data suggest that extranuclear ERs may be promising therapeutic targets to prevent β cell failure in T2D.


Journal of Biological Chemistry | 2011

Protein Phosphatase 5 Mediates Lipid Metabolism through Reciprocal Control of Glucocorticoid Receptor and Peroxisome Proliferator-activated Receptor-γ (PPARγ)

Terry D. Hinds; Lance A. Stechschulte; Harrison A. Cash; Donald Whisler; Ananya Banerjee; Weidong Yong; Saja S. Khuder; Meenakshi Kaw; Weinian Shou; Sonia M. Najjar; Edwin R. Sanchez

Background: The glucocorticoid (GR) and peroxisome proliferator-activated (PPARγ) receptors are antagonists of lipid metabolism. Results: Protein phosphatase 5 (PP5) dephosphorylates GR and PPARγ to reciprocally control their activities. Conclusion: PP5 is a switch point in nuclear receptor control of lipid metabolism. Significance: PP5 is a potential new drug target in the treatment of obesity. Glucocorticoid receptor-α (GRα) and peroxisome proliferator-activated receptor-γ (PPARγ) regulate adipogenesis by controlling the balance between lipolysis and lipogenesis. Here, we show that protein phosphatase 5 (PP5), a nuclear receptor co-chaperone, reciprocally modulates the lipometabolic activities of GRα and PPARγ. Wild-type and PP5-deficient (KO) mouse embryonic fibroblast cells were used to show binding of PP5 to both GRα and PPARγ. In response to adipogenic stimuli, PP5-KO mouse embryonic fibroblast cells showed almost no lipid accumulation with reduced expression of adipogenic markers (aP2, CD36, and perilipin) and low fatty-acid synthase enzymatic activity. This was completely reversed following reintroduction of PP5. Loss of PP5 increased phosphorylation of GRα at serines 212 and 234 and elevated dexamethasone-induced activity at prolipolytic genes. In contrast, PPARγ in PP5-KO cells was hyperphosphorylated at serine 112 but had reduced rosiglitazone-induced activity at lipogenic genes. Expression of the S112A mutant rescued PPARγ transcriptional activity and lipid accumulation in PP5-KO cells pointing to Ser-112 as an important residue of PP5 action. This work identifies PP5 as a fulcrum point in nuclear receptor control of the lipolysis/lipogenesis equilibrium and as a potential target in the treatment of obesity.


Endocrinology | 2010

Caloric Restriction Reverses Hepatic Insulin Resistance and Steatosis in Rats with Low Aerobic Capacity

Thomas A. Bowman; Sadeesh K. Ramakrishnan; Meenakshi Kaw; Sang Jun Lee; Payal R. Patel; Varun K. Golla; Raymond E. Bourey; Per Magnus Haram; Lauren G. Koch; Steven L. Britton; Ulrik Wisløff; Abraham D. Lee; Sonia M. Najjar

Rats selectively bred for low aerobic running capacity exhibit the metabolic syndrome, including hyperinsulinemia, insulin resistance, visceral obesity, and dyslipidemia. They also exhibit features of nonalcoholic steatohepatitis, including chicken-wire fibrosis, inflammation, and oxidative stress. Hyperinsulinemia in these rats is associated with impaired hepatic insulin clearance. The current studies aimed to determine whether these metabolic abnormalities could be reversed by caloric restriction (CR). CR by 30% over a period of 2-3 months improved insulin clearance in parallel to inducing the protein content and activation of the carcinoembryonic antigen-related cell adhesion molecule 1, a main player in hepatic insulin extraction. It also reduced glucose and insulin intolerance and serum and tissue (liver and muscle) triglyceride levels. Additionally, CR reversed inflammation, oxidative stress, and fibrosis in liver. The data support a significant role of CR in the normalization of insulin and lipid metabolism in liver.


Diabetes | 2015

Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

Qusai Y. Al-Share; Anthony M. DeAngelis; Sumona Ghosh Lester; Thomas A. Bowman; Sadeesh K. Ramakrishnan; Simon L. Abdallah; Lucia Russo; Payal R. Patel; Meenakshi Kaw; Christian K. Raphael; Andrea Jung Kim; Garrett Heinrich; Abraham D. Lee; Jason K. Kim; Rohit N. Kulkarni; William M. Philbrick; Sonia M. Najjar

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance.


American Journal of Physiology-endocrinology and Metabolism | 2013

Ceacam1 deletion causes vascular alterations in large vessels

Sonia M. Najjar; Kelly J. Ledford; Simon L. Abdallah; Alexander Paus; Lucia Russo; Meenakshi Kaw; Sadeesh K. Ramakrishnan; Harrison T. Muturi; Christian K. Raphael; Sumona Ghosh Lester; Garrett Heinrich; Sandrine V. Pierre; Ralf A. Benndorf; Veronika Kleff; Ayad A. Jaffa; Emile Levy; Guillermo Vazquez; Ira J. Goldberg; Nicole Beauchemin; Rosario Scalia; Süleyman Ergün

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance and endothelial survival. However, its role in the morphology of macrovessels remains unknown. Mice lacking Ceacam1 (Cc1-/-) exhibit hyperinsulinemia, which causes insulin resistance and fatty liver. With increasing evidence of an association among hyperinsulinemia, fatty liver disease, and atherosclerosis, we investigated whether Cc1-/- exhibited vascular lesions in atherogenic-prone aortae. Histological analysis revealed impaired endothelial integrity with restricted fat deposition and aortic plaque-like lesions in Cc1-/- aortae, likely owing to their limited lipidemia. Immunohistochemical analysis indicated macrophage deposition, and in vitro studies showed increased leukocyte adhesion to aortic wall, mediated in part by elevation in vascular cell adhesion molecule 1 levels. Basal aortic eNOS protein and NO content were reduced, in parallel with reduced Akt/eNOS and Akt/Foxo1 phosphorylation. Ligand-induced vasorelaxation was compromised in aortic rings. Increased NADPH oxidase activity and plasma 8-isoprostane levels revealed oxidative stress and lipid peroxidation in Cc1-/- aortae. siRNA-mediated CEACAM1 knockdown in bovine aortic endothelial cells adversely affected insulins stimulation of IRS-1/PI 3-kinase/Akt/eNOS activation by increasing IRS-1 binding to SHP2 phosphatase. This demonstrates that CEACAM1 regulates both endothelial cell autonomous and nonautonomous mechanisms involved in vascular morphology and NO production in aortae. Systemic factors such as hyperinsulinemia could contribute to the pathogenesis of these vascular abnormalities. Cc1-/- mice provide a first in vivo demonstration of distinct CEACAM1-dependent hepatic insulin clearance linking hepatic to macrovascular abnormalities.


Hepatic Medicine : Evidence and Research | 2010

Mice with null mutation of Ceacam1 develop nonalcoholic steatohepatitis

Sumona Ghosh; Meenakshi Kaw; Payal R. Patel; Kelly J. Ledford; Thomas A. Bowman; Marcia F. McInerney; Sandra K. Erickson; Raymond E. Bourey; Sonia M. Najjar

Transgenic liver-specific inactivation of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) impairs hepatic insulin clearance and causes hyperinsulinemia, insulin resistance, elevation in hepatic and serum triglyceride levels, and visceral obesity. It also predisposes to nonalchoholic steatohepatitis (NASH) in response to a high-fat diet. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we investigated whether Ceacam1 (gene encoding CEACAM1 protein) null mice with impaired insulin clearance also develop a NASH-like phenotype on a prolonged high-fat diet. Three-month-old male null and wild-type mice were fed a high-fat diet for 3 months and their NASH phenotype was examined. While high-fat feeding elevated hepatic triglyceride content in both strains of mice, it exacerbated macrosteatosis and caused NASH-characteristic fibrogenic changes and inflammatory responses more intensely in the null mouse. This demonstrates that CEACAM1-dependent insulin clearance pathways are linked with NASH pathogenesis.


Diabetologia | 2012

Increased metabolic rate and insulin sensitivity in male mice lacking the carcino-embryonic antigen-related cell adhesion molecule 2

Payal R. Patel; Sadeesh K. Ramakrishnan; Meenakshi Kaw; C. K. Raphael; Sumona Ghosh; J. S. Marino; Garrett Heinrich; Sang Jun Lee; R. E. Bourey; J. W. Hill; D. Y. Jung; D. A. Morgan; Jason K. Kim; S. K. Rahmouni; Sonia M. Najjar

Aims/hypothesisThe carcino-embryonic antigen-related cell adhesion molecule (CEACAM)2 is produced in many feeding control centres in the brain, but not in peripheral insulin-targeted tissues. Global Ceacam2 null mutation causes insulin resistance and obesity resulting from hyperphagia and hypometabolism in female Ceacam2 homozygous null mutant mice (Cc2 [also known as Ceacam2]−/−) mice. Because male mice are not obese, the current study examined their metabolic phenotype.MethodsThe phenotype of male Cc2−/− mice was characterised by body fat composition, indirect calorimetry, hyperinsulinaemic–euglycaemic clamp analysis and direct recording of sympathetic nerve activity.ResultsDespite hyperphagia, total fat mass was reduced, owing to the hypermetabolic state in male Cc2−/− mice. In contrast to females, male mice also exhibited insulin sensitivity with elevated β-oxidation in skeletal muscle, which is likely to offset the effects of increased food intake. Males and females had increased brown adipogenesis. However, only males had increased activation of sympathetic tone regulation of adipose tissue and increased spontaneous activity. The mechanisms underlying sexual dimorphism in energy balance with the loss of Ceacam2 remain unknown.Conclusions/interpretationThese studies identified a novel role for CEACAM2 in the regulation of metabolic rate and insulin sensitivity via effects on brown adipogenesis, sympathetic nervous outflow to brown adipose tissue, spontaneous activity and energy expenditure in skeletal muscle.


BMC Molecular Biology | 2010

Translational independence between overlapping genes for a restriction endonuclease and its transcriptional regulator

Meenakshi Kaw; Robert Blumenthal

BackgroundMost type II restriction-modification (RM) systems have two independent enzymes that act on the same DNA sequence: a modification methyltransferase that protects target sites, and a restriction endonuclease that cleaves unmethylated target sites. When RM genes enter a new cell, methylation must occur before restriction activity appears, or the hosts chromosome is digested. Transcriptional mechanisms that delay endonuclease expression have been identified in some RM systems. A substantial subset of those systems is controlled by a family of small transcription activators called C proteins. In the PvuII system, C.PvuII activates transcription of its own gene, along with that of the downstream endonuclease gene. This regulation results in very low R.PvuII mRNA levels early after gene entry, followed by rapid increase due to positive feedback. However, given the lethal consequences of premature REase accumulation, transcriptional control alone might be insufficient. In C-controlled RM systems, there is a ± 20 nt overlap between the C termination codon and the R (endonuclease) initiation codon, suggesting possible translational coupling, and in many cases predicted RNA hairpins could occlude the ribosome binding site for the endonuclease gene.ResultsExpression levels of lacZ translational fusions to pvuIIR or pvuIIC were determined, with the native pvuII promoter having been replaced by one not controlled by C.PvuII. In-frame pvuIIC insertions did not substantially decrease either pvuIIC-lacZ or pvuIIR-lacZ expression (with or without C.PvuII provided in trans). In contrast, a frameshift mutation in pvuIIC decreased expression markedly in both fusions, but mRNA measurements indicated that this decrease could be explained by transcriptional polarity. Expression of pvuIIR-lacZ was unaffected when the pvuIIC stop codon was moved 21 nt downstream from its WT location, or 25 or 40 bp upstream of the pvuIIR initiation codon. Disrupting the putative hairpins had no significant effects.ConclusionsThe initiation of translation of pvuIIR appears to be independent of that for pvuIIC. Direct tests failed to detect regulatory rules for either gene overlap or the putative hairpins. Thus, at least during balanced growth, transcriptional control appears to be sufficiently robust for proper regulation of this RM system.


Molecular metabolism | 2015

High-calorie diet exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene

Jehnan Liu; Sadeesh K. Ramakrishnan; Saja S. Khuder; Meenakshi Kaw; Harrison T. Muturi; Sumona Ghosh Lester; Sang Yup Lee; Larisa Fedorova; Andrea Jung Kim; Iman Mohamed; Cara Gatto-Weis; Kathryn M. Eisenmann; Philip Conran; Sonia M. Najjar

Objective Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten+/− mice. Methods 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten+/− mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. Results In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial–mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. Conclusion High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.


Journal of Biological Chemistry | 2015

Dexamethasone Promotes Hypertension by Allele-specific Regulation of the Human Angiotensinogen Gene * □

Varunkumar Pandey; Sudhir Jain; Anita Rana; Nitin K. Puri; Sri Krishna Chaitanya Arudra; Brahmaraju Mopidevi; Meenakshi Kaw; Alberto Nasjletti; Ashok Kumar

Background: Glucocorticoids modulate the RAS and cause hypertension. Results: SNPs in the hAGT promoter form two haplotypes, −6A and −6G. Transgenic mice with haplotype −6A respond to dexamethasone with tissue-specific up-regulation of hAGT, increased plasma AngII, and hypertension. Conclusion: Haplotypes of the hAGT gene govern transcriptional response to dexamethasone. Significance: Polymorphisms in hAGT provide for genetic predisposition to glucocorticoid-induced hypertension. The human angiotensinogen (hAGT) gene has polymorphisms in its 2.5-kb promoter that form two haplotype (Hap) blocks: −6A/G (−1670A/G, −1562C/T, and −1561T/C) and −217A/G (−532T/C, −793A/G, −1074T/C, and −1178G/A). Hap −6A/−217A is associated with human hypertension, whereas Hap −6G/−217G reduces cardiovascular risk. Hap −6A/−217A has increased promoter activity with enhanced transcription factor binding, including to the glucocorticoid receptor (GR). Glucocorticoid therapy frequently causes hypertension, the mechanisms for which are incompletely understood. We have engineered double transgenic (TG) mice containing the human renin gene with either Hap of the hAGT gene and examined the physiological significance of glucocorticoid-mediated allele-specific regulation of the hAGT gene. We have also studied the consequential effects on the renin angiotensin system and blood pressure. TG mice with Hap −6A and −6G were treated with and without a low dose of a GR agonist, dexamethasone (2.5 μg/ml), for 72 h. We found greater chromatin-GR binding with increased GR agonist-induced hAGT expression in liver and renal tissues of Hap −6A mice. Additionally, dexamethasone treatment increased circulating hAGT and angiotensin II levels in Hap −6A mice, as compared with −6G mice. Importantly, GR agonist significantly increased blood pressure and redox markers in TG mice with Hap-6A of the hAGT gene. Taken together, our results show, for the first time, that glucocorticoids affect hAGT expression in a haplotype-dependent fashion with SNPs in Hap −6A favoring agonist-induced GR binding. This leads to increased expression of the hAGT, up-regulation of the renin angiotensin system, and increased blood pressure and oxidative stress in Hap −6A mice.

Collaboration


Dive into the Meenakshi Kaw's collaboration.

Top Co-Authors

Avatar

Ashok Kumar

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge