Mehmet Ozbil
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mehmet Ozbil.
Journal of the American Chemical Society | 2013
Nathan P. Cook; Mehmet Ozbil; Christina Katsampes; Rajeev Prabhakar; Angel A. Martí
Photoluminescent molecules are widely used for real-time monitoring of peptide aggregation. In this Article, we detail both experimental and computational modeling to elucidate the interaction between [Ru(bpy)2dppz](2+) and amyloid-β (Aβ(1-40)) aggregates. The transition from monomeric to fibrillar Aβ is of interest in the study of Alzheimers disease. Concentration-dependent experiments allowed the determination of a dissociation constant of 2.1 μM, while Job plots provided a binding stoichiometry of 2.6 Aβ monomers per [Ru(bpy)2dppz](2+). Our computational approach that combines molecular docking (both rigid and flexible) and all-atom molecular dynamics (MD) simulations predicts that the hydrophobic cleft between Val18 and Phe20 is a plausible binding site, which could also explain the increase in photoluminescence of [Ru(bpy)2dppz](2+) upon binding. This binding site is parallel to the fibril axis, in marked contrast to the binding site of these complexes in DNA (perpendicular to the DNA axis). Other binding sites may exist at the edges of the Aβ fibril, but they are actually of low abundance in an Aβ fibril several micrometers long. The assignment of the binding site was confirmed by binding studies in an Aβ fragment (Aβ(25-35)) that lacked the amino acids necessary to form the binding site. The agreement between the experimental and computational work is remarkable and provides a general model that can be used for studying the interaction of amyloid-binding molecules to Aβ.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Eric Block; Seogjoo Jang; Hiroaki Matsunami; Sivakumar Sekharan; Bérénice Dethier; Mehmed Z. Ertem; Sivaji Gundala; Yi Pan; Shengju Li; Zhen Li; Stephene N. Lodge; Mehmet Ozbil; Huihong Jiang; Sonia F. Penalba; Victor S. Batista; Hanyi Zhuang
Block et al. (1) have written a critique of the vibrational theory of olfaction that rests on twomain points: (i) they report negative results (i.e., identical responses to normal and deuterated musk isotopomers) in a cultured human embryonic kidney cell derivative line expressing heterologous olfactory receptors; and (ii) they claim that our previous report (2) that humans can smell the difference between undeuterated and deuterated musk isotopomers is in error because of a contaminating impurity they suggest is responsible for the smell difference. We wish to answer these points. Block et al. (1) graciously made the primary data of the musk receptor screen (depicted in figure S3.1 of ref. 1) available to us. We ran an unpaired t test on the entire receptor repertoire and found two (296 and 173 in their numbering) that showed differences between H and D isotopomers. Receptor 296 is their OR51E1, which “was determined to be a nonresponsive OR [odorant receptor] in the follow-up confirmation experiments due to a high receptor background” (1). Its larger response to deuterated isotopomers was not mentioned. Receptor 173 was not described in Block et al.’s paper at all. Its response (Fig. 1) to D24 and D28 musks was smaller (P < 0.02) than to H and the response to D4 was intermediate. We urge Block et al. to publish the identity of receptor 173 and to reexamine these two receptors that potentially invalidate the main conclusion of their paper. Block et al. (1) assert that an impurity may have affected the odor of our deuterated musks. The peak in our NMR spectra, which they point to, is likely to be caused by a small fraction of cyclopentadecane. Block et al. describe the same impurity in their synthesis, and it is visible in their NMR spectra (figure S2.6 of ref. 1) at 0.87. This impurity does not coelute with the musk and is shown and correctly labeled in figure 2 of ref. 2. Furthermore, our sham deuteration protocol controlled for this. We therefore remain entirely confident that the difference in smell between isotopomers revealed by our doubleblind trials is because of the pure peak of deuterated musk. We are struck by the omission of any description of odor character of the deuterated musks Block et al. (1) synthesized and tested. One assumes that a paper entitled “Implausibility of the vibrational theory of olfaction” would have made use of this information if the isotopes smelled identical. Block et al. (1) assert that deuteration affects many physicochemical properties of odorants. This assertion should be contrasted with their report that in all 14 dose–response curves shown, the affinity of the receptors for deuterated odorants was indistinguishable from that of the hydrogen counterparts. Their results show convincingly that those properties of odorants that are involved in molecular recognition (and therefore in shape theories of olfaction) are left unaltered by deuteration. How then do flies (3), humans (2), and possibly their receptors 173 and 296 detect isotopes? On balance, we feel that Block et al.’s (1) conclusion that vibrational theories are implausible is premature.
PLOS ONE | 2012
Dmitry Kurouski; Jacqueline Washington; Mehmet Ozbil; Rajeev Prabhakar; Alexander Shekhtman; Igor K. Lednev
Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.
Journal of the American Chemical Society | 2015
Jeffrey S. Derrick; Richard A. Kerr; Younwoo Nam; Shin Bi Oh; Hyuck Jin Lee; Kaylin G. Earnest; Nayoung Suh; Kristy L. Peck; Mehmet Ozbil; Kyle J. Korshavn; Ayyalusamy Ramamoorthy; Rajeev Prabhakar; Edward J. Merino; Jason Shearer; Joo Yong Lee; Brandon T. Ruotolo; Mi Hee Lim
Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimers disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.
Journal of Physical Chemistry B | 2013
Yi Liu; Arnab Mukherjee; Nadav Nahumi; Mehmet Ozbil; Doreen E. Brown; Alfredo M. Angeles-Boza; David M. Dooley; Rajeev Prabhakar; Justine P. Roth
The mechanism of O(2) reduction by copper amine oxidase from Arthrobacter globiformus (AGAO) is analyzed in relation to the cobalt-substituted protein. The enzyme utilizes a tyrosine-derived topaquinone cofactor to oxidize primary amines and reduce O(2) to H(2)O(2). Steady-state kinetics indicate that amine-reduced CuAGAO is reoxidized by O(2) >10(3) times faster than the CoAGAO analogue. Complementary spectroscopic studies reveal that the difference in the second order rate constant, k(cat)/K(M)(O(2)), arises from the more negative redox potential of Co(III/II) in relation to Cu(II/I). Indistinguishable competitive oxygen-18 kinetic isotope effects are observed for the two enzymes and modeled computationally using a calibrated density functional theory method. The results are consistent with a mechanism where an end-on (η(1))-metal bound superoxide is reduced to an η(1)-hydroperoxide in the rate-limiting step.
Accounts of Chemical Research | 2015
Tingting Zhang; Mehmet Ozbil; Arghya Barman; Thomas J. Paul; Ram Prasad Bora; Rajeev Prabhakar
CONSPECTUS: The selective hydrolysis of a peptide or amide bond (-(O═)C-NH-) by a synthetic metallopeptidase is required in a wide range of biological, biotechnological, and industrial applications. In nature, highly specialized enzymes known as proteases and peptidases are used to accomplish this daunting task. Currently, many peptide bond cleaving enzymes and synthetic reagents have been utilized to achieve efficient peptide hydrolysis. However, they possess some serious limitations. To overcome these inadequacies, a variety of metal complexes have been developed that mimic the activities of natural enzymes (metallopeptidases). However, in comparison to metallopeptidases, the hydrolytic reactions facilitated by their existing synthetic analogues are considerably slower and occur with lower catalytic turnover. This could be due to the following reasons: (1) they lack chemical properties of amino acid residues found within enzyme active sites; (2) they contain a higher metal coordination number compared with naturally occurring enzymes; and (3) they do not have access to second coordination shell residues that provide substantial rate enhancements in enzymes. Additionally, the critical structural and mechanistic information required for the development of the next generation of synthetic metallopeptidases cannot be readily obtained through existing experimental techniques. This is because most experimental techniques cannot follow the individual chemical steps in the catalytic cycle due to the fast rate of enzymes. They are also limited by the fact that the diamagnetic d(10) Zn(II) center is silent to electronic, electron spin resonance, and (67)Zn NMR spectroscopies. Therefore, we have employed molecular dynamics (MD), quantum mechanics (QM), and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques to derive this information. In particular, the role of the metal ions, ligands, and microenvironment in the functioning of mono- and binuclear metal center containing enzymes such as insulin degrading enzyme (IDE) and bovine lens leucine aminopeptidase (BILAP), respectively, and their synthetic analogues have been investigated. Our results suggested that in the functioning of IDE, the chemical nature of the peptide bond played a role in the energetics of the reaction and the peptide bond cleavage occurred in the rate-limiting step of the mechanism. In the cocatalytic mechanism used by BILAP, one metal center polarized the scissile peptide bond through the formation of a bond between the metal and the carbonyl group of the substrate, while the second metal center delivered the hydroxyl nucleophile. The Zn(N3) [Zn(His, His, His)] core of matrix metalloproteinase was better than the Zn(N2O) [Zn(His, His, Glu)] core of IDE for peptide hydrolysis. Due to the synergistic interaction between the two metal centers, the binuclear metal center containing Pd2(μ-OH)([18]aneN6)](4+) complex was found to be ∼100 times faster than the mononuclear [Pd(H2O)4](2+) complex. A successful small-molecule synthetic analogue of a mononuclear metallopeptidase must contain a metal with a strong Lewis acidity capable of reducing the pKa of its water ligand to less than 7. Ideally, the metal center should include three ligands with low basicity. The steric effects or strain exerted by the microenvironment could be used to weaken the metal-ligand interactions and increase the activity of the metallopeptidase.
Journal of Physical Chemistry B | 2010
Ram Prasad Bora; Arghya Barman; Xiaoxia Zhu; Mehmet Ozbil; Rajeev Prabhakar
In this comparative DFT study, the hydrolysis of a peptide bond (Phe1-Phe2) by the following three types of catalysts has been studied: (1) beta-secretase (BACE2), (2) matrix metalloproteinase (MMP) and insulin degrading enzyme (IDE), and (3) [Pd(H(2)O)(4)](2+) (I(MPC)) and [Pd(2)(mu-OH)([18]aneN(6))](3+) (I(DPC)). The computed energetics predict that among these catalysts, the Zn(2+) metal center containing MMP is the most efficient in catalyzing this reaction. The two active site aspartate residues containing BACE2 catalyze this reaction with 5.0 kcal/mol higher barrier than MMP. The substitution of a His ligand with Glu in the metal center of MMP generates the active site of IDE that catalyzes the reaction with a 6.9 kcal/mol higher barrier than MMP. Both artificial peptidases I(MPC) and I(DPC) catalyze this reaction with significantly high barriers of 35.4 and 31.0 kcal/mol, respectively. The computed energetics of all the catalysts are in line with the available experimental and theoretical data.
PLOS ONE | 2015
Eun Suk Song; Mehmet Ozbil; Tingting Zhang; Michael Sheetz; David Lee; Danny Tran; Sheng Li; Rajeev Prabhakar; Louis B. Hersh; David W. Rodgers
Insulin degrading enzyme (IDE) is believed to be the major enzyme that metabolizes insulin and has been implicated in the degradation of a number of other bioactive peptides, including amyloid beta peptide (Aβ), glucagon, amylin, and atrial natriuretic peptide. IDE is activated toward some substrates by both peptides and polyanions/anions, possibly representing an important control mechanism and a potential therapeutic target. A binding site for the polyanion ATP has previously been defined crystallographically, but mutagenesis studies suggest that other polyanion binding modes likely exist on the same extended surface that forms one wall of the substrate-binding chamber. Here we use a computational approach to define three potential ATP binding sites and mutagenesis and kinetic studies to confirm the relevance of these sites. Mutations were made at four positively charged residues (Arg 429, Arg 431, Arg 847, Lys 898) within the polyanion-binding region, converting them to polar or hydrophobic residues. We find that mutations in all three ATP binding sites strongly decrease the degree of activation by ATP and can lower basal activity and cooperativity. Computational analysis suggests conformational changes that result from polyanion binding as well as from mutating residues involved in polyanion binding. These findings indicate the presence of multiple polyanion binding modes and suggest the anion-binding surface plays an important conformational role in controlling IDE activity.
Physical Chemistry Chemical Physics | 2016
Thomas J. Paul; Arghya Barman; Mehmet Ozbil; Ram Prasad Bora; Tingting Zhang; Gaurav Sharma; Zachary Hoffmann; Rajeev Prabhakar
Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp-] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Lucky Ahmed; Yuetian Zhang; Eric Block; Michael Buehl; Michael J. Corr; Rodrigo A. Cormanich; Sivaji Gundala; Hiroaki Matsunami; David O’Hagan; Mehmet Ozbil; Yi Pan; Sivakumar Sekharan; Nicholas Ten; Mingan Wang; Mingyan Yang; Qingzhi Zhang; Ruina Zhang; Victor S. Batista; Hanyi Zhuang
Significance While natural musk has been used for 2,000 years in perfumery, and in traditional medicine for its cardioprotective effects, its mode of activating odorant receptors (ORs) is unknown. ORs, G protein-coupled receptors (GPCRs), which constitute 40% of all pharmacophore receptors, are also expressed in nonolfactory tissues. Understanding the activation of ORs at the molecular level is challenging due to lack of crystallographic models. By combining site-directed mutagenesis with computational studies of human musk ORs involving 35 chiral and achiral muscone analogues, we propose structural models, including binding site prediction and responsible amino acid residues identification. Our studies of musk-responsive ORs should assist the study of the pharmacological effects of musks involving non-OR GPCRs. Understanding olfaction at the molecular level is challenging due to the lack of crystallographic models of odorant receptors (ORs). To better understand the molecular mechanism of OR activation, we focused on chiral (R)-muscone and other musk-smelling odorants due to their great importance and widespread use in perfumery and traditional medicine, as well as environmental concerns associated with bioaccumulation of musks with estrogenic/antiestrogenic properties. We experimentally and computationally examined the activation of human receptors OR5AN1 and OR1A1, recently identified as specifically responding to musk compounds. OR5AN1 responds at nanomolar concentrations to musk ketone and robustly to macrocyclic sulfoxides and fluorine-substituted macrocyclic ketones; OR1A1 responds only to nitromusks. Structural models of OR5AN1 and OR1A1 based on quantum mechanics/molecular mechanics (QM/MM) hybrid methods were validated through direct comparisons with activation profiles from site-directed mutagenesis experiments and analysis of binding energies for 35 musk-related odorants. The experimentally found chiral selectivity of OR5AN1 to (R)- over (S)-muscone was also computationally confirmed for muscone and fluorinated (R)-muscone analogs. Structural models show that OR5AN1, highly responsive to nitromusks over macrocyclic musks, stabilizes odorants by hydrogen bonding to Tyr260 of transmembrane α-helix 6 and hydrophobic interactions with surrounding aromatic residues Phe105, Phe194, and Phe207. The binding of OR1A1 to nitromusks is stabilized by hydrogen bonding to Tyr258 along with hydrophobic interactions with surrounding aromatic residues Tyr251 and Phe206. Hydrophobic/nonpolar and hydrogen bonding interactions contribute, respectively, 77% and 13% to the odorant binding affinities, as shown by an atom-based quantitative structure–activity relationship model.