Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehmet Tuzcu is active.

Publication


Featured researches published by Mehmet Tuzcu.


Life Sciences | 2010

Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats.

Kazim Sahin; Mehmet Tuzcu; Hasan Gencoglu; Ayhan Dogukan; Mustafa Timurkan; Nurhan Sahin; Abdullah Aslan; Omer Kucuk

AIMS Cisplatin-induced nephrotoxicity is associated with increased oxidative stress and inflammatory cytokines in the kidney. Epigallocatechin-3-gallate (EGCG) has anti-oxidant, anti-inflammatory, and anti-tumorigenic properties. In this study, we investigated the effects of EGCG on cisplatin-induced nephrotoxicity and potential mechanisms by which it enhances antioxidant activities and resolves inflammation after EGCG treatment during cisplatin-induced nephrotoxicity. MAIN METHODS Twenty-eight rats were divided into four groups as control (group 1; no treatment; n=7), EGCG (group 2; n=7), cisplatin (group 3; n=7) or cisplatin and EGCG (group 4; n=7). After 2 days of EGCG treatment at a dose of l00 mg/kg BW, rats were treated with a single i.p. injection of cisplatin (7 mg/kg BW). On day 12 (10days after the cisplatin treatment), all rats were sacrificed by cervical dislocation. The level of protein was examined by Western blotting. KEY FINDINGS Cisplatin caused a significant decrease in the expression nuclear levels of NF-E2-related factor-2 (Nrf2), heme oxygenase-1(HO-1), and an increase in the levels of nuclear factor-kappa B (NF-kappaB p65) and 4-hydroxynonenal (HNE) an oxidative stress marker. EGCG supplementation significantly improved the changes associated with cisplatin nephrotoxicity by increasing levels of Nrf-2 and HO-1, and decreasing levels of NF-kappaB and HNE. Renal activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase) and glutathione were significantly lower in cisplatin-treated rats compared with control rats, and EGCG treatment significantly increased the activities of antioxidant enzymes and glutathione (P<0.001). SIGNIFICANCE The results suggest that Nrf2/HO-1 signaling pathway may be the primary target for prevention of cisplatin-induced nephrotoxicity by EGCG, and that reduces it inflammation by inhibiting NF-kappaB.


Free Radical Biology and Medicine | 2003

Melatonin reduces glial reactivity in the hippocampus, cortex, and cerebellum of streptozotocin-induced diabetic rats

Giyasettin Baydas; Russel J. Reiter; Abdullah Yasar; Mehmet Tuzcu; Ismail Akdemir; Viktor S. Nedzvetskii

Hyperglycemia plays a critical role in the development and progression of diabetic neuropathy. One of the mechanisms by which hyperglycemia causes neural degeneration is via the increased oxidative stress that accompanies diabetes. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) and S100B, both astrocytic markers. In the present study, we examined glial reactivity in hippocampus, cortex, and cerebellum of streptozotocin (STZ)-induced diabetic rats by determining the expression of GFAP and S-100B and we evaluated the effect of melatonin on the glial response. Western blot measurement of contents in brain regions after 6 weeks of STZ-induced diabetes indicated significant increases in these constituents compared with those in nondiabetic controls. Administration of melatonin prevented the upregulation of GFAP in all brain regions of diabetic rats. Using GFAP immunohistochemistry, we observed an increase in GFAP immunostaining in the hippocampus of STZ-diabetic rats relative to levels in the control brains. Treatment with melatonin resulted in an obvious reduction of GFAP-immunoreactive astrocytes in hippocampus. Like GFAP, S100B levels also were increased in all three brain areas of diabetic rats, an effect also reduced by melatonin treatment. Finally, the levels of lipid peroxidation products were elevated as a consequence of diabetes, with this change also being prevented by melatonin. These results suggest that diabetes causes increased glial reactivity possibly due to elevated oxidative stress, and administration of melatonin represents an achievable adjunct therapy for preventing gliosis.


Neuroscience | 2005

Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels.

Giyasettin Baydas; Russel J. Reiter; M. Akbulut; Mehmet Tuzcu; S. Tamer

In the present study, we examined the molecular mechanism by which homocysteine causes neuronal cell apoptosis. We further investigated the mechanisms of melatonins ability to reduce homocysteine-induced apoptosis. Consistent with its antioxidant properties, melatonin reduced homocysteine-induced lipid peroxidation and stimulated glutathione peroxidase enzyme activity in hippocampus of rats with hyperhomocysteinemia. Furthermore, melatonin treatment diminished cytochrome c release from mitochondria and reduced caspase 3 and caspase 9 activation induced by hyperhomocysteinemia. Chronic hyperhomocysteinemia also led to poly(ADP-ribose) polymerase cleavage and subsequently DNA fragmentation. Treatment with melatonin markedly inhibited poly(ADP-ribose) polymerase cleavage and reduced DNA damage. Hyperhomocysteinemia caused an elevation of pro-apoptotic Bax levels while reducing anti-apoptotic protein, Bcl-2, levels. Daily administration of melatonin up-regulated Bcl-2 and down-regulated Bax levels. We propose that, in addition to its antioxidant properties, melatonin has the ability to protect neuronal cells against apoptosis mediated homocysteine neurotoxicity by modulating apoptosis-regulatory proteins in the hippocampus of rats.


European Journal of Pharmacology | 2003

Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E

Giyasettin Baydas; Viktor S. Nedzvetskii; Mehmet Tuzcu; Abdullah Yasar; Svetlana V. Kirichenko

Glial interactions with neurones play vital roles during the ontogeny of the nervous system and in the adult brain. Physical and metabolic insults cause rapid changes in the glial cells and this phenomenon is called reactive gliosis. One of the important events during astrocyte differentiation is the increased expression of glial markers, glial fibrillary acidic protein (GFAP) and S-100B protein. Diabetes mellitus is the most common serious metabolic disorder, which is characterised by functional and structural changes in the peripheral as well as in the central nervous system. In the present study, we aimed to investigate glial reactivity in hippocampus, cortex and cerebellum of streptozotocin-induced diabetic rats by determining the expression of GFAP and S-100B and also to examine the protective effects of vitamin E against gliosis. Western blotting showed increases in total and degraded GFAP content and S-100B protein expression in brain tissues of diabetic rats compared with those of controls. In addition, there was a significant increase in lipid peroxidation in these brain regions of diabetic rats. Both glial markers and lipid peroxidation levels were reversed by vitamin E administration. These findings indicate that streptozotocin-induced diabetes alters degradation and production of GFAP and S-100B, which are markers of reactive astrocytosis. Thus, determination of GFAP and S-100B may provide a relevant marker in the central nervous system for studying neurodegenerative changes in experimental diabetes mellitus. This study also suggests that the gliosis that occurs in diabetes mellitus is mediated, at least indirectly, by free radical formation and antioxidants may prevent reactive gliosis possibly by reducing damaging effects of reactive oxygen species in the central nervous system.


Nutrition & Metabolism | 2013

Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway.

Ülkan Kilic; Ertugrul Kilic; Zeynep Tuzcu; Mehmet Tuzcu; Ibrahim Hanifi Ozercan; Ökkeş Yilmaz; Fikrettin Sahin; Kazim Sahin

BackgroundCisplatin, one of the most effective and potent anticancer drugs, is used in the treatment of a wide variety of both pediatric and adult malignancies. However, the chemotherapeutic use of cisplatin is limited by its serious side-effects such as nephrotoxicity and ototoxicity. Cisplatin chemotherapy induces a reduction in the antioxidant status, leading to a failure of the antioxidant defense against free-radical damage generated by antitumor drugs. Cisplatin-induced oxidative stress in the kidney was partially prevented by antioxidant treatments using superoxide dismutase, glutathione, selenium and flavonoids. Melatonin and its metabolites possess free-radical scavenging activity and it has been shown that they protect against cisplatin toxicity. However, the mechanism of the protective effects of melatonin against cisplatin-induced nephrotoxicity is still essentially unknown. We therefore designed this study to investigate the underlying mechanism of the protective effect of melatonin against cisplatin-induced renal damage in a rat nephrotoxicity model in vivo.MethodsTwenty eight 8-week-old male Wistar rats were divided into four groups of control, melatonin treatment (4 mg/kg b.w i.p. for 10 days), cisplatin treatment (7 mg/kg b.w., i.p.) and melatonin and cisplatin combination treatment. Serum urea nitrogen (urea-N) and creatinine levels were measured. Histopathological changes were evaluated. In addition, we analyzed the expression levels of HO-1, Nrf2, NF-κB and AP-1 in Western blot analysis.ResultsBoth serum creatinine and urea nitrogen increased significantly following cisplatin administration alone; these values decreased significantly with melatonin co-treatment of cisplatin-treated rats. Histological analysis showed that cisplatin caused damage in the proximal tubular cells in the kidneys of cisplatin-treated rats; these changes were reversed by melatonin co-treatment. Upon Western blot analysis, melatonin treatment increased Nrf2 accumulation in the nuclear fraction, and increased the expression of HO-1 in the cytosolic fraction as compared to the cisplatin-treated rats. Expressions of NF-κB p65 and AP-1 were increased significantly in the kidneys of rats treated with cisplatin compared with the expression in the kidneys from the control, melatonin-only-treated and melatonin co-treated rats.ConclusionOur present data suggest that melatonin attenuates cisplatin-induced nephrotoxicity possibly by modulating Nrf2/HO-1 signaling.


Toxicology Letters | 2003

Melatonin protects the central nervous system of rats against toluene-containing thinner intoxication by reducing reactive gliosis

Giyasettin Baydas; Russel J. Reiter; Viktor S. Nedzvetskii; Abdullah Yasar; Mehmet Tuzcu; Faik Ozveren; Halit Canatan

Neuroprotective effects of melatonin against free radical damage have been studied extensively. Thinner containing 60-70% toluene is a neurotoxic mixture which is widely used as an aromatic industrial solvent. This product has been shown to cause functional and structural changes in the central nervous system. Toluene generates reactive oxygen species (ROS) and the toxic effects relating to these reactants. In the present study we investigated glial reactivity in hippocampus, cortex and cerebellum and the expression of glial fibrillary acidic protein (GFAP) after exposure of rats to toluene vapor (3000 ppm) for 45 days. We also examined the protective effects of melatonin against gliosis. Western blots demonstrated a marked elevation in total GFAP, a specific marker for astrocytes, by thinner fume inhalation in the hippocampus (P<0.001), cortex (P<0.01) and cerebellum (P<0.05) of rats. Melatonin administration prevented the increase of total GFAP induced by thinner fume inhalation. Thinner exposure caused a significant increase of lipid peroxidation products (malondialdehyde and 4-hydroxyalkenals) in all brain regions (P<0.01 for each region), and this elevation was also was inhibited by melatonin. Furthermore, melatonin augmented glutathione levels in all brain regions (P<0.05 for each region) investigated. In conclusion, melatonin treatment may provide neuroprotection against toluene neurotoxicity by increasing the survival of glial cells possibly by directly scavenging ROS and by indirectly augmenting their antioxidant capacity.


Journal of Oncology | 2012

Sensitization of Cervical Cancer Cells to Cisplatin by Genistein: The Role of NFκB and Akt/mTOR Signaling Pathways

K. Sahin; Mehmet Tuzcu; N. Basak; B. Caglayan; Ülkan Kilic; Fikrettin Sahin; Omer Kucuk

Cervical cancer is among the top causes of death from cancer in women. Cisplatin-based chemotherapy has been shown to improve survival; however, cisplatin treatment is associated with toxicity to healthy cells. Genistein has been used as an adjunct to chemotherapy to enhance the activity of chemotherapeutic agents without causing increased toxicity. The present study was designed to investigate the effect of genistein (25 μM) on antitumor activity of cisplatin (250 nM) on HeLa cervical cancer cells. We have examined the alterations in expression of NF-κB, p-mTOR, p-p70S6K1, p-4E-BP1, and p-Akt protein levels in response to treatment. The combination of 25 μM genistein with 250 nM cisplatin resulted in significantly greater growth inhibition (P < 0.01). Genistein enhanced the antitumor activity of cisplatin and reduced the expression of NF-κB, p-mTOR, p-p70S6K1, p-4E-BP1, and p-Akt. The results in the present study suggest that genistein could enhance the activity of cisplatin via inhibition of NF-κB and Akt/mTOR pathways. Genistein is a promising nontoxic nutritional agent that may enhance treatment outcome in cervical cancer patients when given concomitantly with cisplatin. Clinical trials of genistein and cisplatin combination are warranted to test this hypothesis.


Food and Chemical Toxicology | 2010

Nrf2/HO-1 signaling pathway may be the prime target for chemoprevention of cisplatin-induced nephrotoxicity by lycopene.

Kazim Sahin; Mehmet Tuzcu; Nurhan Sahin; Shakir Ali; Omer Kucuk

Cisplatin is used against various types of solid tumors. However, its use is limited by its nephrotoxicity, with about 25-35% patients experiencing a significant decline in renal function after a single dose of cisplatin. This study reports that lycopene mitigates the nephrotoxic effect of cisplatin in rat through Nrf2-mediated induction of heme oxygenase-1 (HO-1). Eight weeks old male rats (200-215 g) were supplemented with lycopene complex containing 6% lycopene, 1.5% tocopherols, 1% phytoene and phytofluene, and 0.2% beta-carotene for 10 days at a dose level of 6 mg/kg bw, followed by a single i.p. injection of cisplatin (7 mg/kg bw). Western blot analysis of renal Nrf2, HO-1 and NF-kappaB p65 showed that cisplatin-induced decrease in the levels of Nrf-2 and HO-1 was counteracted by lycopene. On the other hand, cisplatin mediated increase in NF-kappaB p65 was brought down by lycopene. Lycopene supplementation is reported to significantly improve the changes associated with cisplatin nephrotoxicity, as also evident by increased level of antioxidant enzymes. The study suggests that Nrf2/HO-1 signaling pathway may be the prime target for chemoprevention of cisplatin-induced nephrotoxicity by lycopene, and reduces inflammation by inhibiting NF-kappaB. Correlation between NF-kappaB and Nrf2 is discussed.


Toxicology | 2011

Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin-diabetic male rats

Ramazan Bal; Gaffari Türk; Mehmet Tuzcu; Ökkeş Yilmaz; Ibrahim Hanifi Ozercan; Tuncay Kuloglu; Seyfettin Gür; Victor S. Nedzvetsky; Artem A. Tykhomyrov; Grigory V. Andrievsky; Giyasettin Baydas; Mustafa Nazıroğlu

Diabetes mellitus is a well-recognized cause of male sexual dysfunction and impairments of male fertility. Streptozotocin (STZ) is used for medical treatment of neoplastic islet β-cells of pancreas and producing of animal model of diabetes mellitus type 1 that is characterized by suppression of reproductive activity due to the hyperglycaemia-induced oxidative stress and histopathological alterations in testes. Seeking for the agents that could alleviate diabetes-induced damage to reproductive system is yet the important area of inquiry. The present study was designed to evaluate whether hydrated C(60) fullerene (C(60)HyFn), which is known to be powerful bioantioxidant, eliminate testicular dysfunction induced by STZ-diabetes in rats. Wistar strain male albino rats were divided into four groups of six animals each: (1) control group, (2) C(60)HyFn-treated nondiabetic group, (3) STZ-diabetic group and (4) C(60)HyFn-treated diabetic group. Once hyperglycaemia was induced by STZ, rats in the second and fourth groups were treated with C(60)HyFn (in the form of drinking water) at the dose of 4μg/kg daily for 5 weeks. In diabetic rats, relative weights of right cauda epididymis, seminal vesicles, prostate, sperm motility and epididymal sperm concentration were significantly less than those of control group, but which were restored in the fourth group treated with C(60)HyFn (p<0.001). In hematoxylin and eosin staining, marked histopathological changes including degeneration, desquamation, disorganisation and reduction in germinal cells, interstitial oedema and congestion were evident in the testis of diabetic rats, but C(60)HyFn treatment resulted in recovery of histopathological changes and an increase in Johnsens testicular score significantly (p<0.001). C(60)HyFn treatment restores the increased apoptosis induced by STZ-diabetes. In diabetic rats, levels of serum testosterone, testicular reduced glutathione (GSH) and alpha-tocopherol were significantly reduced and testicular lipid peroxidation level was increased (p<0.001). Nevertheless, treatment of diabetic rats with C(60)HyFn resulted in significant corrective effects on these parameters towards the control levels. C(60)HyFn, applied alone, did not exert any toxic effects in testicular tissues. Furthermore, C(60)HyFn treatment in diabetic and nondiabetic rats resulted in considerable elevations of some important polyunsaturated fatty acids. In conclusion, we have presented for the first time substantial evidence that administration of C(60)HyFn significantly reduces diabetes-induced oxidative stress and associated complications such as testicular dysfunction and spermatogenic disruption.


Poultry Science | 2010

Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails

Kazim Sahin; Cemal Orhan; Mehmet Tuzcu; Shakir Ali; Nurhan Sahin; A. Hayirli

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from green tea, exerts antioxidant effects. Oxidative stress is one of the consequences of heat stress (HS), which also depresses performance in poultry. This experiment was conducted to elucidate the action mode of EGCG in alleviation of oxidative stress in heat-stressed quail (Coturnix coturnix japonica). A total of 180 five-week-old female Japanese quails were reared either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (HS) for 12 wk. Birds in both environments were randomly fed 1 of 3 diets: basal diet and basal diet added with 200 or 400 mg of EGCG/kg of diet. Each of the 2×3 factorially arranged groups was replicated in 10 cages, each containing 3 quails. Performance variables [feed intake (FI) and egg production (EP)], oxidative stress biomarkers [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and hepatic transcription factors [nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)] were analyzed using 2-way ANOVA. Exposure to HS caused reductions in FI by 9.7% and EP by 14.4%, increased hepatic MDA level by 84.8%, and decreased hepatic SOD, CAT, and GSH-Px activities by 25.8, 52.3, and 45.5%, respectively (P<0.0001 for all). The hepatic NF-κB expression was greater (156 vs. 82%) and Nrf2 expression was lower (84 vs. 118%) for quails reared under the HS environment than for those reared under the TN environment (P<0.0001 for both). In response to increasing supplemental EGCG level, there were linear increases in FI from 29.6 to 30.9 g/d and EP from 84.3 to 90.1%/d, linear decreases in hepatic MDA level from 2.82 to 1.72 nmol/g and Nrf2 expression from 77.5 to 123.3%, and linear increases in hepatic SOD (146.4 to 182.2), CAT (36.2 to 47.1), and GSH-Px (13.5 to 18.5) activities (U/mg of protein) and NF-κB expression (149.7 to 87.3%) (P<0.0001 for all). Two-way treatment interactions revealed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental EGCG level was increased. Moreover, levels of oxidative biomarkers were strongly correlated with expressions of hepatic nuclear transcription factors. In conclusion, supplemental EGCG alleviates oxidative stress through modulating the hepatic nuclear transcription factors in heat-stressed quails.

Collaboration


Dive into the Mehmet Tuzcu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge