Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meilan Zhao is active.

Publication


Featured researches published by Meilan Zhao.


Nature Neuroscience | 2011

Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II

Ramendra N. Saha; Erin M. Wissink; Emma R. Bailey; Meilan Zhao; David C. Fargo; Ji-Yeon Hwang; Kelly R Daigle; J Daniel Fenn; Karen Adelman; Serena M. Dudek

Transcription of immediate early genes (IEGs) in neurons is highly sensitive to neuronal activity, but the mechanism underlying these early transcription events is largely unknown. We found that several IEGs, such as Arc (also known as Arg3.1), are poised for near-instantaneous transcription by the stalling of RNA polymerase II (Pol II) just downstream of the transcription start site in rat neurons. Depletion through RNA interference of negative elongation factor, a mediator of Pol II stalling, reduced the Pol II occupancy of the Arc promoter and compromised the rapid induction of Arc and other IEGs. In contrast, reduction of Pol II stalling did not prevent transcription of IEGs that were expressed later and largely lacked promoter-proximal Pol II stalling. Together, our data strongly indicate that the rapid induction of neuronal IEGs requires poised Pol II and suggest a role for this mechanism in a wide variety of transcription-dependent processes, including learning and memory.


Proceedings of the National Academy of Sciences of the United States of America | 2010

RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory

Sarah Emerson Lee; Stephen B. Simons; Scott A. Heldt; Meilan Zhao; Jason P. Schroeder; Christopher P. Vellano; D. Patrick Cowan; Suneela Ramineni; Cindee K. Yates; Yue Feng; Yoland Smith; J. David Sweatt; David Weinshenker; Kerry J. Ressler; Serena M. Dudek; John R. Hepler

Learning and memory have been closely linked to strengthening of synaptic connections between neurons (i.e., synaptic plasticity) within the dentate gyrus (DG)–CA3–CA1 trisynaptic circuit of the hippocampus. Conspicuously absent from this circuit is area CA2, an intervening hippocampal region that is poorly understood. Schaffer collateral synapses on CA2 neurons are distinct from those on other hippocampal neurons in that they exhibit a perplexing lack of synaptic long-term potentiation (LTP). Here we demonstrate that the signaling protein RGS14 is highly enriched in CA2 pyramidal neurons and plays a role in suppression of both synaptic plasticity at these synapses and hippocampal-based learning and memory. RGS14 is a scaffolding protein that integrates G protein and H-Ras/ERK/MAP kinase signaling pathways, thereby making it well positioned to suppress plasticity in CA2 neurons. Supporting this idea, deletion of exons 2–7 of the RGS14 gene yields mice that lack RGS14 (RGS14-KO) and now express robust LTP at glutamatergic synapses in CA2 neurons with no impact on synaptic plasticity in CA1 neurons. Treatment of RGS14-deficient CA2 neurons with a specific MEK inhibitor blocked this LTP, suggesting a role for ERK/MAP kinase signaling pathways in this process. When tested behaviorally, RGS14-KO mice exhibited marked enhancement in spatial learning and in object recognition memory compared with their wild-type littermates, but showed no differences in their performance on tests of nonhippocampal-dependent behaviors. These results demonstrate that RGS14 is a key regulator of signaling pathways linking synaptic plasticity in CA2 pyramidal neurons to hippocampal-based learning and memory but distinct from the canonical DG–CA3–CA1 circuit.


The Journal of Neuroscience | 2007

Synaptic Plasticity (and the Lack Thereof) in Hippocampal CA2 Neurons

Meilan Zhao; Yun-Sik Choi; Karl Obrietan; Serena M. Dudek

The hippocampus is critical for some forms of memory and spatial navigation, but previous research has mostly neglected the CA2, a unique region situated between CA3 and CA1. Here, we show that CA2 pyramidal neurons have distinctive physiological characteristics that include an unprecedented synaptic stability. Although basal synaptic currents in CA1 and CA2 are quite similar, synaptic plasticity including long-term potentiation and long-term depression is absent or less likely to be induced with conventional methods of stimulation in CA2. We also find that CA2 neurons have larger leak currents and more negative resting membrane potentials than CA1 neurons, and consequently, more current is required for action potential generation in CA2 neurons. These data suggest that the molecular “conspiracy against plasticity” in CA2 makes it functionally distinct from the other hippocampal CA regions. This work provides critical insight into hippocampal function and may lead to an understanding of the resistance of CA2 to damage from disease, trauma, and hypoxia.


Molecular Psychiatry | 2015

Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2

J. H. Pagani; Meilan Zhao; Z. Cui; S K Williams Avram; Douglas A. Caruana; Serena M. Dudek; W S Young

The vasopressin 1b receptor (Avpr1b) is critical for social memory and social aggression in rodents, yet little is known about its specific roles in these behaviors. Some clues to Avpr1b function can be gained from its profile of expression in the brain, which is largely limited to the pyramidal neurons of the CA2 region of the hippocampus, and from experiments showing that inactivation of the gene or antagonism of the receptor leads to a reduction in social aggression. Here we show that partial replacement of the Avpr1b through lentiviral delivery into the dorsal CA2 region restored the probability of socially motivated attack behavior in total Avpr1b knockout mice, without altering anxiety-like behaviors. To further explore the role of the Avpr1b in this hippocampal region, we examined the effects of Avpr1b agonists on pyramidal neurons in mouse and rat hippocampal slices. We found that selective Avpr1b agonists induced significant potentiation of excitatory synaptic responses in CA2, but not in CA1 or in slices from Avpr1b knockout mice. In a way that is mechanistically very similar to synaptic potentiation induced by oxytocin, Avpr1b agonist-induced potentiation of CA2 synapses relies on NMDA (N-methyl-D-aspartic acid) receptor activation, calcium and calcium/calmodulin-dependent protein kinase II activity, but not on cAMP-dependent protein kinase activity or presynaptic mechanisms. Our data indicate that the hippocampal CA2 is important for attacking in response to a male intruder and that the Avpr1b, likely through its role in regulating CA2 synaptic plasticity, is a necessary mediator.


Nature Neuroscience | 2012

Caffeine-induced synaptic potentiation in hippocampal CA2 neurons

Stephen B. Simons; Douglas A. Caruana; Meilan Zhao; Serena M. Dudek

Caffeine enhances cognition, but even high non-physiological doses have modest effects on synapses. A1 adenosine receptors (A1Rs) are antagonized by caffeine and are most highly enriched in hippocampal CA2, which has not been studied in this context. We found that physiological doses of caffeine in vivo or A1R antagonists in vitro induced robust, long-lasting potentiation of synaptic transmission in rat CA2 without affecting other regions of the hippocampus.


The Journal of Neuroscience | 2005

Pattern-Dependent Role of NMDA Receptors in Action Potential Generation: Consequences on Extracellular Signal-Regulated Kinase Activation

Meilan Zhao; J. Paige Adams; Serena M. Dudek

Synaptic long-term potentiation is maintained through gene transcription, but how the nucleus is recruited remains controversial. Activation of extracellular signal-regulated kinases (ERKs) 1 and 2 with synaptic stimulation has been shown to require NMDA receptors (NMDARs), yet stimulation intensities sufficient to recruit action potentials (APs) also appear to be required. This has led us to ask the question of whether NMDARs are necessary for AP generation as they relate to ERK activation. To test this, we examined the effects of NMDAR blockade on APs induced with synaptic stimulation using whole-cell current-clamp recordings from CA1 pyramidal cells in hippocampal slices. NMDAR antagonists were found to potently inhibit APs generated with 5 and 100 Hz synaptic stimulation. Blockade of APs and ERK activation could be overcome with the addition of the GABAA antagonist bicuculline, indicating that APs are sufficient to activate signals such as ERK in the nucleus and throughout the neuron in the continued presence of NMDAR antagonists. Interestingly, no effects of the NMDAR antagonists were observed when theta-burst stimulation (TBS) was used. This resistance to the antagonists is conferred by temporal summation during the bursts. These results clarify findings from a previous study showing that ERK activation induced with TBS is resistant to 2-amino-5-phosphonovalerate, in contrast to that induced with 5 or 100 Hz stimulation, which is sensitive. By showing that NMDAR blockade inhibits AP generation, we demonstrate that a major role that NMDARs play in cell-wide and nuclear ERK activation is through their contribution to action potential generation.


eNeuro | 2017

Histone Hypervariants H2A.Z.1 and H2A.Z.2 Play Independent and Context-Specific Roles in Neuronal Activity-Induced Transcription of Arc/Arg3.1 and Other Immediate Early Genes

Carissa J. Dunn; Pushpita Sarkar; Emma R. Bailey; Shannon Farris; Meilan Zhao; James M. Ward; Serena M. Dudek; Ramendra N. Saha

Abstract The histone variant H2A.Z is an essential and conserved regulator of eukaryotic gene transcription. However, the exact role of this histone in the transcriptional process remains perplexing. In vertebrates, H2A.Z has two hypervariants, H2A.Z.1 and H2A.Z.2, that have almost identical sequences except for three amino acid residues. Due to such similarity, functional specificity of these hypervariants in neurobiological processes, if any, remain largely unknown. In this study with dissociated rat cortical neurons, we asked if H2A.Z hypervariants have distinct functions in regulating basal and activity-induced gene transcription. Hypervariant-specific RNAi and microarray analyses revealed that H2A.Z.1 and H2A.Z.2 regulate basal expression of largely nonoverlapping gene sets, including genes that code for several synaptic proteins. In response to neuronal activity, rapid transcription of our model gene Arc is impaired by depletion of H2A.Z.2, but not H2A.Z.1. This impairment is partially rescued by codepletion of the H2A.Z chaperone, ANP32E. In contrast, under a different context (after 48 h of tetrodotoxin, TTX), rapid transcription of Arc is impaired by depletion of either hypervariant. Such context-dependent roles of H2A.Z hypervariants, as revealed by our multiplexed gene expression assays, are also evident with several other immediate early genes, where regulatory roles of these hypervariants vary from gene to gene under different conditions. Together, our data suggest that H2A.Z hypervariants have context-specific roles that complement each other to mediate activity-induced neuronal gene transcription.


Neurobiology of Learning and Memory | 2017

Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning

Maile A. Henson; Charles J. Tucker; Meilan Zhao; Serena M. Dudek

HighlightsNMDA applications induce LTD and synapse pruning in cultured rat neurons.NMDA‐mediated decreases in synapse density require LTD‐associated signaling.Synapse loss is independent of spine loss, dendrite location, or direct contact with microglia.NMDAR‐LTD is likely a required step in an in vitro model of synapse pruning. Abstract Activity‐dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in response to the environment during postnatal brain development. Although there is compelling evidence that shrinkage of dendritic spines coincides with synaptic long‐term depression (LTD), and that LTD is accompanied by synapse loss, whether NMDA receptor (NMDAR)‐dependent LTD is a required step in the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of fluorescent markers for pre‐ and postsynaptic structures, was decreased irrespective of the presynaptic marker used, post‐treatment recovery time, and the dendritic location of synapses. Consistent with previous studies, we found that synapse loss could occur without apparent net spine loss or cell death. Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these cells was minimal in our culture preparations. Supporting a model by which NMDAR‐LTD is required for synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and caspase inhibitors. In addition, gene transcription and protein translation also appeared to be required for loss of putative synapses. These data support the idea that NMDAR‐dependent LTD is a required step in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental process.


Hippocampus | 2018

Diversity of dendritic morphology and entorhinal cortex synaptic effectiveness in mouse CA2 pyramidal neurons

Thomas D. Helton; Meilan Zhao; Shannon Farris; Serena M. Dudek

Excitatory synaptic inputs from specific brain regions are often targeted to distinct dendritic arbors on hippocampal pyramidal neurons. Recent work has suggested that CA2 pyramidal neurons respond robustly and preferentially to excitatory input into the stratum lacunosum moleculare (SLM), with a relatively modest response to Schaffer collateral excitatory input into stratum radiatum (SR) in acute mouse hippocampal slices, but the extent to which this difference may be explained by morphology is unknown. In an effort to replicate these findings and to better understand the role of dendritic morphology in shaping responses from proximal and distal synaptic sites, we measured excitatory postsynaptic currents and action potentials in CA2 pyramidal cells in response to SR and SLM stimulation and subsequently analyzed confocal images of the filled cells. We found that, in contrast to previous reports, SR stimulation evoked substantial responses in all recorded CA2 pyramidal cells. Strikingly, however, we found that not all neurons responded to SLM stimulation, and in those neurons that did, responses evoked by SLM and SR were comparable in size and effectiveness in inducing action potentials. In a comprehensive morphometric analysis of CA2 pyramidal cell apical dendrites, we found that the neurons that were unresponsive to SLM stimulation were the same ones that lacked substantial apical dendritic arborization in the SLM. Neurons responsive to both SR and SLM stimulation had roughly equal amounts of dendritic branching in each layer. Remarkably, our study in mouse CA2 generally replicates the work characterizing the diversity of CA2 pyramidal cells in the guinea pig hippocampus. We conclude, then, that like in guinea pig, mouse CA2 pyramidal cells have a diverse apical dendrite morphology that is likely to be reflective of both the amount and source of excitatory input into CA2 from the entorhinal cortex and CA3.


Archive | 2015

NMDA Receptor-Dependent Mechanism Bursting in the Rat Hippocampal CA3 Region Via an Adenosine Receptor Antagonists Induce Persistent

J NeurophysiolThümmler; Thomas V. Dunwiddie; Meilan Zhao; J. Paige Adams; Serena M. Dudek; Chris G. Dulla; Bruno G. Frenguelli; Kevin J. Staley; Susan A. Masino; Devon C. Crawford; Chun Yun Chang; Krzysztof L. Hyrc; Steven Mennerick

Collaboration


Dive into the Meilan Zhao's collaboration.

Top Co-Authors

Avatar

Serena M. Dudek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

J. Paige Adams

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma R. Bailey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon Farris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen B. Simons

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles J. Tucker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge