Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie A. Samuel is active.

Publication


Featured researches published by Melanie A. Samuel.


Journal of Virology | 2005

Alpha/Beta Interferon Protects against Lethal West Nile Virus Infection by Restricting Cellular Tropism and Enhancing Neuronal Survival

Melanie A. Samuel; Michael S. Diamond

ABSTRACT West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-α/β) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-α/β receptor-deficient (IFN- α/βR−/−) mice and primary neuronal cultures. IFN-α/βR−/− mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 ± 0.7 and 3.8± 0.5 days after infection with 100 and 102 PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 102 PFU showed 62% mortality and a MTD of 11.9 ± 1.9 days. IFN-α/βR−/− mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-α/βR−/− mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-β either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-α/β controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.


Journal of Virology | 2005

Neuronal CXCL10 Directs CD8+ T-Cell Recruitment and Control of West Nile Virus Encephalitis

Robyn S. Klein; Eugene Lin; Bo Zhang; Andrew D. Luster; Judy Tollett; Melanie A. Samuel; Michael Engle; Michael S. Diamond

ABSTRACT The activation and entry of antigen-specific CD8+ T cells into the central nervous system is an essential step towards clearance of West Nile virus (WNV) from infected neurons. The molecular signals responsible for the directed migration of virus-specific T cells and their cellular sources are presently unknown. Here we demonstrate that in response to WNV infection, neurons secrete the chemokine CXCL10, which recruits effector T cells via the chemokine receptor CXCR3. Neutralization or a genetic deficiency of CXCL10 leads to a decrease in CXCR3+ CD8+ T-cell trafficking, an increase in viral burden in the brain, and enhanced morbidity and mortality. These data support a new paradigm in chemokine neurobiology, as neurons are not generally considered to generate antiviral immune responses, and CXCL10 may represent a novel neuroprotective agent in response to WNV infection in the central nervous system.


Journal of Virology | 2008

Toll-Like Receptor 3 Has a Protective Role against West Nile Virus Infection

Stephane Daffis; Melanie A. Samuel; Mehul S. Suthar; Michael Gale; Michael S. Diamond

ABSTRACT Protection against West Nile virus (WNV) infection requires rapid viral sensing and the generation of an interferon (IFN) response. Mice lacking IFN regulatory factor 3 (IRF-3) show increased vulnerability to WNV infection with enhanced viral replication and blunted IFN-stimulated gene (ISG) responses. IRF-3 functions downstream of several viral sensors, including Toll-like receptor 3 (TLR3), RIG-I, and MDA5. Cell culture studies suggest that host recognizes WNV in part, through the cytoplasmic helicase RIG-I and to a lesser extent, MDA5, both of which activate ISG expression through IRF-3. However, the role of TLR3 in vivo in recognizing viral RNA and activating antiviral defense pathways has remained controversial. We show here that an absence of TLR3 enhances WNV mortality in mice and increases viral burden in the brain. Compared to congenic wild-type controls, TLR3−/− mice showed relatively modest changes in peripheral viral loads. Consistent with this, little difference in multistep viral growth kinetics or IFN-α/β induction was observed between wild-type and TLR3−/− fibroblasts, macrophages, and dendritic cells. In contrast, a deficiency of TLR3 was associated with enhanced viral replication in primary cortical neuron cultures and greater WNV infection in central nervous system neurons after intracranial inoculation. Taken together, our data suggest that TLR3 serves a protective role against WNV in part, by restricting replication in neurons.


Journal of Virology | 2006

Pathogenesis of West Nile Virus Infection: a Balance between Virulence, Innate and Adaptive Immunity, and Viral Evasion

Melanie A. Samuel; Michael S. Diamond

West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis. WNV is maintained in an enzootic cycle between mosquitoes and birds (reviewed in reference [75][1]) but can also infect and cause disease in horses and other vertebrate animals.


Journal of Virology | 2006

PKR and RNase L Contribute to Protection against Lethal West Nile Virus Infection by Controlling Early Viral Spread in the Periphery and Replication in Neurons

Melanie A. Samuel; Kevin Whitby; Brian C. Keller; Anantha Marri; Winfried Barchet; Bryan R. G. Williams; Robert H. Silverman; Michael Gale; Michael S. Diamond

ABSTRACT West Nile virus (WNV) is a neurotropic, mosquito-borne flavivirus that can cause lethal meningoencephalitis. Type I interferon (IFN) plays a critical role in controlling WNV replication, spread, and tropism. In this study, we begin to examine the effector mechanisms by which type I IFN inhibits WNV infection. Mice lacking both the interferon-induced, double-stranded-RNA-activated protein kinase (PKR) and the endoribonuclease of the 2′,5′-oligoadenylate synthetase-RNase L system (PKR−/− × RL−/−) were highly susceptible to subcutaneous WNV infection, with a 90% mortality rate compared to the 30% mortality rate observed in congenic wild-type mice. PKR−/− × RL−/− mice had increased viral loads in their draining lymph nodes, sera, and spleens, which led to early viral entry into the central nervous system (CNS) and higher viral burden in neuronal tissues. Although mice lacking RNase L showed a higher CNS viral burden and an increased mortality, they were less susceptible than the PKR−/− × RL−/− mice; thus, we also infer an antiviral role for PKR in the control of WNV infection. Notably, a deficiency in both PKR and RNase L resulted in a decreased ability of type I IFN to inhibit WNV in primary macrophages and cortical neurons. In contrast, the peripheral neurons of the superior cervical ganglia of PKR−/− × RL−/− mice showed no deficiency in the IFN-mediated inhibition of WNV. Our data suggest that PKR and RNase L contribute to IFN-mediated protection in a cell-restricted manner and control WNV infection in peripheral tissues and some neuronal subtypes.


PLOS Pathogens | 2010

Six RNA viruses and forty-one hosts: Viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems

Poornima Parameswaran; Ella H. Sklan; Courtney Wilkins; Trever B. Burgon; Melanie A. Samuel; Rui Lu; K. Mark Ansel; Vigo Heissmeyer; Shirit Einav; William T. Jackson; Tammy Doukas; Suman Paranjape; Charlotta Polacek; Flavia Barreto dos Santos; Roxana Jalili; Farbod Babrzadeh; Baback Gharizadeh; Dirk Grimm; Mark A. Kay; Satoshi Koike; Peter Sarnow; Mostafa Ronaghi; Shou-Wei Ding; Eva Harris; Marie Chow; Michael S. Diamond; Karla Kirkegaard; Jeffrey S. Glenn; Andrew Fire

We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts.


Journal of Virology | 2006

CD8+ T Cells Require Perforin To Clear West Nile Virus from Infected Neurons

Bimmi Shrestha; Melanie A. Samuel; Michael S. Diamond

ABSTRACT Injury to neurons after West Nile virus (WNV) infection is believed to occur because of viral and host immune-mediated effects. Previously, we demonstrated that CD8+ T cells are required for the resolution of WNV infection in the central nervous system (CNS). CD8+ T cells can control infection by producing antiviral cytokines (e.g., gamma interferon or tumor necrosis factor alpha) or by triggering death of infected cells through perforin- or Fas ligand-dependent pathways. Here, we directly evaluated the role of perforin in controlling infection of a lineage I New York isolate of WNV in mice. A genetic deficiency of perforin molecules resulted in higher viral burden in the CNS and increased mortality after WNV infection. In the few perforin-deficient mice that survived initial challenge, viral persistence was observed in the CNS for several weeks. CD8+ T cells required perforin to control WNV infection as adoptive transfer of WNV-primed wild-type but not perforin-deficient CD8+ T cells greatly reduced infection in the brain and spinal cord and enhanced survival of CD8-deficient mice. Analogous results were obtained when wild-type or perforin-deficient CD8+ T cells were added to congenic primary cortical neuron cultures. Taken together, our data suggest that despite the risk of immunopathogenesis, CD8+ T cells use a perforin-dependent mechanism to clear WNV from infected neurons.


PLOS Pathogens | 2007

Cell-Specific IRF-3 Responses Protect against West Nile Virus Infection by Interferon- Dependent and -Independent Mechanisms

Stephane Daffis; Melanie A. Samuel; Brian C. Keller; Michael Gale; Michael S. Diamond

Interferon regulatory factor (IRF)-3 is a master transcription factor that activates host antiviral defense programs. Although cell culture studies suggest that IRF-3 promotes antiviral control by inducing interferon (IFN)-β, near normal levels of IFN-α and IFN-β were observed in IRF-3−/− mice after infection by several RNA and DNA viruses. Thus, the specific mechanisms by which IRF-3 modulates viral infection remain controversial. Some of this disparity could reflect direct IRF-3-dependent antiviral responses in specific cell types to control infection. To address this and determine how IRF-3 coordinates an antiviral response, we infected IRF-3−/− mice and two primary cells relevant for West Nile virus (WNV) pathogenesis, macrophages and cortical neurons. IRF-3−/− mice were uniformly vulnerable to infection and developed elevated WNV burdens in peripheral and central nervous system tissues, though peripheral IFN responses were largely normal. Whereas wild-type macrophages basally expressed key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and restricted WNV infection, IRF-3−/− macrophages lacked basal expression of these host defense genes and supported increased WNV infection and IFN-α and IFN-β production. In contrast, wild-type cortical neurons were highly permissive to WNV and did not basally express RIG-I, MDA5, ISG54, and ISG56. IRF-3−/− neurons lacked induction of host defense genes and had blunted IFN-α and IFN-β production, yet exhibited only modestly increased viral titers. Collectively, our data suggest that cell-specific IRF-3 responses protect against WNV infection through both IFN-dependent and -independent programs.


Journal of Virology | 2006

Resistance to Alpha/Beta Interferon Is a Determinant of West Nile Virus Replication Fitness and Virulence

Brian C. Keller; Brenda L. Fredericksen; Melanie A. Samuel; Richard E. Mock; Peter W. Mason; Michael S. Diamond; Michael Gale

ABSTRACT The emergence of West Nile virus (WNV) in the Western Hemisphere is marked by the spread of pathogenic lineage I strains, which differ from typically avirulent lineage II strains. To begin to understand the virus-host interactions that may influence the phenotypic properties of divergent lineage I and II viruses, we compared the genetic, pathogenic, and alpha/beta interferon (IFN-α/β)-regulatory properties of a lineage II isolate from Madagascar (MAD78) with those of a new lineage I isolate from Texas (TX02). Full genome sequence analysis revealed that MAD78 clustered, albeit distantly, with other lineage II strains, while TX02 clustered with emergent North American isolates, more specifically with other Texas strains. Compared to TX02, MAD78 replicated at low levels in cultured human cells, was highly sensitive to the antiviral actions of IFN in vitro, and demonstrated a completely avirulent phenotype in wild-type mice. In contrast to TX02 and other pathogenic forms of WNV, MAD78 was defective in its ability to disrupt IFN-induced JAK-STAT signaling, including the activation of Tyk2 and downstream phosphorylation and nuclear translocation of STAT1 and STAT2. However, replication of MAD78 was rescued in cells with a nonfunctional IFN-α/β receptor (IFNAR). Consistent with this finding, the virulence of MAD78 was unmasked upon infection of mice lacking IFNAR. Thus, control of the innate host response and IFN actions is a key feature of WNV pathogenesis and replication fitness.


Journal of Virology | 2006

Gamma Interferon Plays a Crucial Early Antiviral Role in Protection against West Nile Virus Infection

Bimmi Shrestha; Tian Wang; Melanie A. Samuel; Kevin Whitby; Joe Craft; Erol Fikrig; Michael S. Diamond

ABSTRACT West Nile virus (WNV) causes a severe central nervous system (CNS) infection in humans, primarily in the elderly and immunocompromised. Prior studies have established an essential protective role of several innate immune response elements, including alpha/beta interferon (IFN-α/β), immunoglobulin M, γδ T cells, and complement against WNV infection. In this study, we demonstrate that a lack of IFN-γ production or signaling results in increased vulnerability to lethal WNV infection by a subcutaneous route in mice, with a rise in mortality from 30% (wild-type mice) to 90% (IFN-γ−/− or IFN-γR−/− mice) and a decrease in the average survival time. This survival pattern in IFN-γ−/− and IFN-γR−/− mice correlated with higher viremia and greater viral replication in lymphoid tissues. The increase in peripheral infection led to early CNS seeding since infectious WNV was detected several days earlier in the brains and spinal cords of IFN-γ−/− or IFN-γR−/− mice. Bone marrow reconstitution experiments showed that γδ T cells require IFN-γ to limit dissemination by WNV. Moreover, treatment of primary dendritic cells with IFN-γ reduced WNV production by 130-fold. Collectively, our experiments suggest that the dominant protective role of IFN-γ against WNV is antiviral in nature, occurs in peripheral lymphoid tissues, and prevents viral dissemination to the CNS.

Collaboration


Dive into the Melanie A. Samuel's collaboration.

Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael Gale

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Brian C. Keller

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephane Daffis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bimmi Shrestha

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Engle

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Amine Noueiry

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge