Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melanie H. Kucherlapati is active.

Publication


Featured researches published by Melanie H. Kucherlapati.


Nature Medicine | 2000

A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains

Christelle Peyron; Juliette Faraco; William J. Rogers; Beth Ripley; Sebastiaan Overeem; Yves Charnay; Sona Nevsimalova; Michael S. Aldrich; David M. Reynolds; Roger L. Albin; Robin Li; Marcel Hungs; Mario Pedrazzoli; Muralidhara Padigaru; Melanie H. Kucherlapati; Jun Fan; Richard A. Maki; Gert Jan Lammers; Constantin Bouras; Raju Kucherlapati; Seiji Nishino; Emmanuel Mignot

We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression

Melanie H. Kucherlapati; Kan Yang; Mari Kuraguchi; Jie Zhao; Maria Lia; Joerg Heyer; Michael F. Kane; Kunhua Fan; Robert G. Russell; Anthony M. C. Brown; Burkhard Kneitz; Winfried Edelmann; Richard D. Kolodner; Martin Lipkin; Raju Kucherlapati

Flap endonuclease (Fen1) is required for DNA replication and repair, and defects in the gene encoding Fen1 cause increased accumulation of mutations and genome rearrangements. Because mutations in some genes involved in these processes cause cancer predisposition, we investigated the possibility that Fen1 may function in tumorigenesis of the gastrointestinal tract. Using gene knockout approaches, we introduced a null mutation into murine Fen1. Mice homozygous for the Fen1 mutation were not obtained, suggesting absence of Fen1 expression leads to embryonic lethality. Most Fen1 heterozygous animals appear normal. However, when combined with a mutation in the adenomatous polyposis coli (Apc) gene, double heterozygous animals have increased numbers of adenocarcinomas and decreased survival. The tumors from these mice show microsatellite instability. Because one copy of the Fen1 gene remained intact in tumors, Fen1 haploinsufficiency appears to lead to rapid progression of cancer.


Human Molecular Genetics | 2011

A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease

David A. McDonald; Robert Shenkar; Changbin Shi; Rebecca A. Stockton; Amy Akers; Melanie H. Kucherlapati; Raju Kucherlapati; James Brainer; Mark H. Ginsberg; Issam A. Awad; Douglas A. Marchuk

Cerebral cavernous malformations (CCMs) are vascular lesions of the central nervous system appearing as multicavernous, blood-filled capillaries, leading to headache, seizure and hemorrhagic stroke. CCM occurs either sporadically or as an autosomal dominant disorder caused by germline mutation of one of the three genes: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. Surgically resected human CCM lesions have provided molecular and immunohistochemical evidence for a two-hit (germline plus somatic) mutation mechanism. In contrast to the equivalent human genotype, mice heterozygous for a Ccm1- or Ccm2-null allele do not develop CCM lesions. Based on the two-hit hypothesis, we attempted to improve the penetrance of the model by crossing Ccm1 and Ccm2 heterozygotes into a mismatch repair-deficient Msh2(-/-) background. Ccm1(+/-)Msh2(-/-) mice exhibit CCM lesions with high penetrance as shown by magnetic resonance imaging and histology. Significantly, the CCM lesions range in size from early-stage, isolated caverns to large, multicavernous lesions. A subset of endothelial cells within the CCM lesions revealed somatic loss of CCM protein staining, supporting the two-hit mutation mechanism. The late-stage CCM lesions displayed many of the characteristics of human CCM lesions, including hemosiderin deposits, immune cell infiltration, increased endothelial cell proliferation and increased Rho-kinase activity. Some of these characteristics were also seen, but to a lesser extent, in early-stage lesions. Tight junctions were maintained between CCM lesion endothelial cells, but gaps were evident between endothelial cells and basement membrane was defective. In contrast, the Ccm2(+/-)Msh2(-/-) mice lacked cerebrovascular lesions. The CCM1 mouse model provides an in vivo tool to investigate CCM pathogenesis and new therapies.


Gastroenterology | 2010

An Msh2 conditional knockout mouse for studying intestinal cancer and testing anticancer agents.

Melanie H. Kucherlapati; Kyeryoung Lee; Andrew Nguyen; Alan B. Clark; Harry Hou; Andrew Rosulek; Hua Li; Kan Yang; Kunhua Fan; Martin Lipkin; Roderick T. Bronson; Linda A. Jelicks; Thomas A. Kunkel; Raju Kucherlapati; Winfried Edelmann

BACKGROUND & AIMS Mutations in the DNA mismatch repair (MMR) gene MSH2 cause Lynch syndromes I and II and sporadic colorectal cancers. Msh2(null) mice predominantly develop lymphoma and do not accurately recapitulate the colorectal cancer phenotype. METHODS We generated and examined mice with a conditional Msh2 disruption (Msh2(LoxP)), permitting tissue-specific gene inactivation. ECMsh2(LoxP/LoxP) mice carried an EIIa-Cre transgene, and VCMsh2(LoxP/LoxP) mice carried a Villin-Cre transgene. We combined the VCMsh2(LoxP) allele with either Msh2(Delta7null) (VCMsh2(LoxP/null)) or Msh2(G674D) mutations (VCMsh2(LoxP/G674D)) to create allelic phase mutants. These mice were given cisplatin or 5-fluorouracil/leucovorin and oxaliplatin (FOLFOX), and their tumors were measured by magnetic resonance imaging. RESULTS Embryonic fibroblasts from ECMsh2(LoxP/LoxP) mice do not express MSH2 and are MMR deficient. Reverse transcription, polymerase chain reaction, and immunohistochemistry from VCMsh2(LoxP/LoxP) mice demonstrated specific loss of Msh2 messenger RNA and protein from epithelial cells of the intestinal tract. Microsatellite instability was observed in all VCMsh2 strains and limited to the intestinal mucosa. Resulting adenomas and adenocarcinomas had somatic truncation mutations to the adenomatous polyposis coli (Apc) gene. VCMsh2(LoxP/LoxP) mice did not develop lymphoma. Comparison of allelic phase tumors revealed significant differences in multiplicity and size. When treated with cisplatin or FOLFOX, tumor size was reduced in VCMsh2(LoxP/G674D) but not VCMsh2(LoxP/null) tumors. The apoptotic response to FOLFOX was partially sustained in the intestinal mucosa of VCMsh2(LoxP/G674D) animals. CONCLUSIONS Msh2(LoxP/LoxP) mice in combination with appropriate Cre recombinase transgenes have excellent potential for preclinical modeling of Lynch syndrome, MMR-deficient tumors of other tissue types, and use in drug development.


Cancer Prevention Research | 2011

Aspirin and Low Dose Nitric Oxide-Donating Aspirin Increase Life Span in a Lynch Syndrome Mouse Model

Michael A. McIlhatton; Jessica Tyler; Laura A. Kerepesi; Tina Bocker-Edmonston; Melanie H. Kucherlapati; Winfried Edelmann; Raju Kucherlapati; Levy Kopelovich; Richard Fishel

Nonsteroidal anti–inflammatory drugs (NSAID) appear to be effective cancer chemopreventives. Previous cellular studies showed that aspirin (acetylsalicylic acid: ASA) and nitric oxide–donating ASA (NO-ASA) suppressed microsatellite instability (MSI) in mismatch repair (MMR)-deficient cells linked to the common cancer predisposition syndrome hereditary nonpolyposis colorectal cancer or Lynch syndrome (LS/HNPCC), at doses 300- to 3,000-fold less than ASA. Using a mouse model that develops MMR-deficient intestinal tumors that appear pathologically identical to LS/HNPCC, we show that ASA (400 mg/kg) and low-dose NO-ASA (72 mg/kg) increased life span by 18% to 21%. We also note a trend where ASA treatment resulted in intestinal tumors with reduced high MSI (H-MSI) and increased low MSI (L-MSI) as defined by the Bethesda Criteria. Low-dose NO-ASA had a minimal effect on MSI status. In contrast to previous studies, high-dose NO-ASA (720/1,500 mg/kg) treatments increased tumor burden, decreased life span, and exacerbated MSI uniquely in the LS/HNPCC mouse model. These results suggest that MMR-deficient tissues/mice may be specifically sensitive to intrinsic pharmacokinetic features of this drug. It is likely that long-term treatment with ASA may represent a chemopreventive option for LS/HNPCC patients. Moreover, as low-dose NO-ASA shows equivalent life span increase at 10-fold lower doses than ASA, it may have the potential to significantly reduce the gastropathy associated with long-term ASA treatment. Cancer Prev Res; 4(5); 684–93. ©2011 AACR.


PLOS ONE | 2012

Msh2 Acts in Medium-Spiny Striatal Neurons as an Enhancer of CAG Instability and Mutant Huntingtin Phenotypes in Huntington's Disease Knock-In Mice

Marina Kovalenko; Ella Dragileva; Jason St. Claire; Tammy Gillis; Jolene R. Guide; Jaclyn New; Hualing Dong; Raju Kucherlapati; Melanie H. Kucherlapati; Michelle E. Ehrlich; Jong-Min Lee; Vanessa C. Wheeler

The CAG trinucleotide repeat mutation in the Huntington’s disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111) with mice carrying a conditional (floxed) Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.


Cancer Research | 2006

Inactivation of Conditional Rb by Villin-Cre Leads to Aggressive Tumors outside the Gastrointestinal Tract

Melanie H. Kucherlapati; Andrew Nguyen; Roderick T. Bronson; Raju Kucherlapati

We have crossed mice carrying the conditional Rb(tm2Brn) allele with a constitutive Villin-Cre transgenic mouse. The Villin promoter in these animals is highly expressed in adult intestine and kidney proximal tubules and is expressed in the gut and nephros anlagen during embryogenesis. We report here that these mice develop tumors between 12 and 17 months old outside the gastrointestinal (GI) tract. A high penetrance of pituitary tumors and medullar carcinoma of the thyroid is observed with a lower incidence of hyperplasia of pulmonary neuroendocrine cells and aggressive liver, bile duct, stomach, oral cavity tumors, and lipomas. Rb rearrangement due to ectopic Villin promoter activity in neural crest or neural crest stem cells during embryogenesis is most likely responsible for the medullar carcinoma of the thyroid phenotype. The aggressive nature of the medullar carcinoma of the thyroid and its ability to metastasize to unusual sites make the model suitable for the study of tumor progression and mechanism of metastasis. Observed sites of metastasis include the stomach, small intestine, liver, lung, kidney, pancreas, spleen, bone marrow, salivary gland, fat, lymph nodes, and dorsal root ganglion. Because the Villin promoter is highly active throughout the GI and in the nephros anlagen during development, we find that Rb inactivation is not sufficient to initiate tumorigenesis in the GI or kidneys in mice.


Oncogene | 2007

Tumor progression in Apc 1638N mice with Exo1 and Fen1 deficiencies

Melanie H. Kucherlapati; Aaron N. Nguyen; Mari Kuraguchi; Kan Yang; Kunhua Fan; Roderick T. Bronson; K Wei; Martin Lipkin; Winfried Edelmann; Raju Kucherlapati

Flap endonuclease 1 (Fen1) and exonuclease 1 (Exo1) have sequence homology and similar nuclease capabilities. Both function in multiple pathways of DNA metabolism, but appear to have distinct in vivo nucleic acid substrates, and therefore distinct metabolic roles. When combined with Apc1638N, Fen1 promotes tumor progression. Because of functional similarity to Fen1, and because Exo1 is involved in DNA mismatch repair (MMR) by interaction with Msh2 and Mlh1, genes that cause hereditary nonpolyposis colorectal cancer (HNPCC), we investigated the possibility that Exo1 might also act as a modifier to Apc1638N. We present evidence that mice with combined mutations in Apc1638N and Exo1 and Apc1638N, Exo1 and Fen1 genes show moderate increased tumor incidence and multiplicity in comparison to Apc1638N siblings, implying a low penetrance role for Exo1 in early gastrointestinal (GI) tumorigenesis. Despite a decrease in median survival (10 months) in Apc1638N Exo1 mice, their tumors do not progress any more rapidly than those of Apc1638N. Instead these animals die from infections that are the result of impaired immune response. Apc1638N Exo1 Fen1 mice survive longer (18 months), and therefore appear relatively immune competent. They die of invasive GI tumors that display microsatellite instability (MSI). Our results show that Exo1 has a modest tumor suppressor function.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Loss of Rb1 in the gastrointestinal tract of Apc1638N mice promotes tumors of the cecum and proximal colon

Melanie H. Kucherlapati; Kan Yang; Kunhua Fan; Mari Kuraguchi; Dmitriy Sonkin; Andrew Rosulek; Martin Lipkin; Roderick T. Bronson; Bruce J. Aronow; Raju Kucherlapati

To examine the role of Rb1 in gastrointestinal (GI) tumors, we generated mice with an Apc1638N allele, Rbtm2brn floxed alleles, and a villin-cre transgene (RBVCA). These animals had exon 19 deleted from Rb1 throughout the GI tract. We have shown previously that Rb1 deficiency is insufficient for GI tumor initiation, with inactivation of an Apc allele capable of overcoming the insufficiency. In this study we demonstrate that RBVCA mice have reduced median survival because of an increase in tumor incidence and multiplicity in the cecum and the proximal colon. Large intestinal tumors are predominantly adenomas, whereas the tumors of the small intestine are a mixture of adenomas and adenocarcinomas. We find truncation mutations to the second Apc allele in tumors of both the large and small intestine. Expression profiles of duodenal and cecal tumors relative to each other show unique gene subsets up and down regulated. Substantial expression patterns compare to human colorectal cancer, including recapitulation of embryonic genes. Our results indicate that Rb1 has significant influence over tumor location in the GI tract, and that both cecal and duodenal tumors initiate through inactivation of Apc. Expression profile analysis indicates the two tumor types differentially regulate distinct sets of genes that are over-expressed in a majority of human colorectal carcinomas.


Gut | 2015

Mesalazine and thymoquinone attenuate intestinal tumour development in Msh2 loxP/loxP Villin-Cre mice

Benedikt Kortüm; Christoph Campregher; Michaela Lang; Vineeta Khare; Matthias Pinter; Rayko Evstatiev; Gerald Schmid; Martina Mittlböck; Theresa Scharl; Melanie H. Kucherlapati; Winfried Edelmann; Christoph Gasche

Objective Lynch syndrome is caused by germline mutations in DNA mismatch repair genes leading to microsatellite instability (MSI) and colorectal cancer. Mesalazine, commonly used for the treatment of UC, reduces MSI in vitro. Here, we tested natural compounds for such activity and applied mesalazine and thymoquinone in a Msh2loxP/loxP Villin-Cre mouse model for Lynch syndrome. Design Flow cytometry was used for quantitation of mutation rates at a CA13 microsatellite in human colon cancer (HCT116) cells that had been stably transfected with pIREShyg2-enhanced green fluorescent protein/CA13, a reporter for frameshift mutations. Mice were treated for 43 weeks with mesalazine, thymoquinone or control chow. Intestines were analysed for tumour incidence, tumour multiplicity and size. MSI testing was performed from microdissected normal intestinal or tumour tissue, compared with mouse tails and quantified by the number of mutations per marker (NMPM). Results Besides mesalazine, thymoquinone significantly improved replication fidelity at 1.25 and 2.5 µM in HCT116 cells. In Msh2loxP/loxP Villin-Cre mice, tumour incidence was reduced by mesalazine from 94% to 69% (p=0.04) and to 56% (p=0.003) by thymoquinone. The mean number of tumours was reduced from 3.1 to 1.4 by mesalazine (p=0.004) and to 1.1 by thymoquinone (p<0.001). Interestingly, MSI was reduced in normal intestinal tissue from 1.5 to 1.2 NMPM (p=0.006) and to 1.1 NMPM (p=0.01) by mesalazine and thymoquinone, respectively. Thymoquinone, but not mesalazine, reduced MSI in tumours. Conclusions Mesalazine and thymoquinone reduce tumour incidence and multiplicity in Msh2loxP/loxP Villin-Cre mice by reduction of MSI independent of a functional mismatch repair system. Both substances are candidate compounds for chemoprevention in Lynch syndrome mutation carriers.

Collaboration


Dive into the Melanie H. Kucherlapati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winfried Edelmann

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kan Yang

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Kunhua Fan

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexei Protopopov

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Andrew Nguyen

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge