Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel C. Gordon is active.

Publication


Featured researches published by Nathaniel C. Gordon.


Immunity | 2002

BAFF/BLyS Receptor 3 Binds the B Cell Survival Factor BAFF Ligand through a Discrete Surface Loop and Promotes Processing of NF-κB2

Nobuhiko Kayagaki; Minhong Yan; Dhaya Seshasayee; Hua Wang; Wyne P. Lee; Dorothy French; Iqbal S. Grewal; Andrea G. Cochran; Nathaniel C. Gordon; JianPing Yin; Melissa A. Starovasnik; Vishva M. Dixit

The TNF-like ligand BAFF/BLyS is a potent survival factor for B cells. It binds three receptors: TACI, BCMA, and BR3. We show that BR3 signaling promotes processing of the transcription factor NF-kappaB2/p100 to p52. NF-kappaB2/p100 cleavage was abrogated in B cells from A/WySnJ mice possessing a mutant BR3 gene, but not in TACI or BCMA null B cells. Furthermore, wild-type mice injected with BAFF-neutralizing BR3-Fc protein showed reduced basal NF-kappaB2 activation. BR3-Fc treatment of NZB/WF1 mice, which develop a fatal lupus-like syndrome, inhibited NF-kappaB2 processing and attenuated the disease process. Since inhibiting the BR3-BAFF interaction has therapeutic ramifications, the ligand binding interface of BR3 was investigated and found to reside within a 26 residue core domain. When stabilized within a structured beta-hairpin peptide, six of these residues were sufficient to confer binding to BAFF.


Cell | 2008

Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies.

Kim Newton; Marissa L. Matsumoto; Ingrid E. Wertz; Donald S. Kirkpatrick; Jennie R. Lill; Jenille Tan; Debra L. Dugger; Nathaniel C. Gordon; Sachdev S. Sidhu; Frederic A. Fellouse; Laszlo Komuves; Dorothy French; Ronald E. Ferrando; Cynthia Lam; Deanne M. Compaan; Christine Yu; Ivan Bosanac; Sarah G. Hymowitz; Robert F. Kelley; Vishva M. Dixit

Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have developed linkage-specific antibodies that recognize polyubiquitin chains joined through lysine 63 (K63) or 48 (K48). A cocrystal structure of an anti-K63 linkage Fab bound to K63-linked diubiquitin provides insight into the molecular basis for specificity. We use these antibodies to demonstrate that RIP1, which is essential for tumor necrosis factor-induced NF-kappaB activation, and IRAK1, which participates in signaling by interleukin-1beta and Toll-like receptors, both undergo polyubiquitin editing in stimulated cells. Both kinase adaptors initially acquire K63-linked polyubiquitin, while at later times K48-linked polyubiquitin targets them for proteasomal degradation. Polyubiquitin editing may therefore be a general mechanism for attenuating innate immune signaling.


Journal of Biological Chemistry | 2005

Structures of APRIL-Receptor Complexes LIKE BCMA, TACI EMPLOYS ONLY A SINGLE CYSTEINE-RICH DOMAIN FOR HIGH AFFINITY LIGAND BINDING

Sarah G. Hymowitz; Darshana Ramesh Patel; Heidi J.A. Wallweber; Steven T. Runyon; Minhong Yan; JianPing Yin; Stephanie Shriver; Nathaniel C. Gordon; Borlan Pan; Nicholas J. Skelton; Robert F. Kelley; Melissa A. Starovasnik

TACI is a member of the tumor necrosis factor receptor superfamily and serves as a key regulator of B cell function. TACI binds two ligands, APRIL and BAFF, with high affinity and contains two cysteine-rich domains (CRDs) in its extracellular region; in contrast, BCMA and BR3, the other known high affinity receptors for APRIL and BAFF, respectively, contain only a single or partial CRD. However, another form of TACI exists wherein the N-terminal CRD is removed by alternative splicing. We find that this shorter form is capable of ligand-induced cell signaling and that the second CRD alone (TACI_d2) contains full affinity for both ligands. Furthermore, we report the solution structure and alanine-scanning mutagenesis of TACI_d2 along with co-crystal structures of APRIL·TACI_d2 and APRIL·BCMA complexes that together reveal the mechanism by which TACI engages high affinity ligand binding through a single CRD, and we highlight sources of ligand-receptor specificity within the APRIL/BAFF system.


Protein Science | 2001

The PYRIN domain: A member of the death domain-fold superfamily

Wayne J. Fairbrother; Nathaniel C. Gordon; Eric W Humke; Karen O'Rourke; Melissa A. Starovasnik; JianPing Yin; Vishva M. Dixit

PYRIN domains were identified recently as putative protein–protein interaction domains at the N‐termini of several proteins thought to function in apoptotic and inflammatory signaling pathways. The ∼95 residue PYRIN domains have no statistically significant sequence homology to proteins with known three‐dimensional structure. Using secondary structure prediction and potential‐based fold recognition methods, however, the PYRIN domain is predicted to be a member of the six‐helix bundle death domain‐fold superfamily that includes death domains (DDs), death effector domains (DEDs), and caspase recruitment domains (CARDs). Members of the death domain‐fold superfamily are well established mediators of protein–protein interactions found in many proteins involved in apoptosis and inflammation, indicating further that the PYRIN domains serve a similar function. An homology model of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1, a member of the Apaf‐1/Ced‐4 family of proteins, was constructed using the three‐dimensional structures of the FADD and p75 neurotrophin receptor DDs, and of the Apaf‐1 and caspase‐9 CARDs, as templates. Validation of the model using a variety of computational techniques indicates that the fold prediction is consistent with the sequence. Comparison of a circular dichroism spectrum of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1 with spectra of several proteins known to adopt the death domain‐fold provides experimental support for the structure prediction.


Biochemistry | 2003

BAFF/BLyS receptor 3 comprises a minimal TNF receptor-like module that encodes a highly focused ligand-binding site

Nathaniel C. Gordon; Borlan Pan; Sarah G. Hymowitz; JianPing Yin; Robert F. Kelley; Andrea G. Cochran; Minhong Yan; Vishva M. Dixit; Wayne J. Fairbrother; Melissa A. Starovasnik


Journal of Biological Chemistry | 2004

Engineering an APRIL-specific B Cell Maturation Antigen

Darshana Ramesh Patel; Heidi J.A. Wallweber; JianPing Yin; Stephanie Shriver; Scot A. Marsters; Nathaniel C. Gordon; Melissa A. Starovasnik; Robert F. Kelley


Blood | 2006

Synthetic anti-BR3 antibodies that mimic BAFF binding and target both human and murine B cells

Chingwei V. Lee; Sarah G. Hymowitz; Heidi J. Wallweber; Nathaniel C. Gordon; Karen Billeci; Siao-Ping Tsai; Deanne M. Compaan; Jian Ping Yin; Qian Gong; Robert F. Kelley; Laura DeForge; Flavius Martin; Melissa A. Starovasnik; Germaine Fuh


Archive | 2004

Blys antagonists and uses thereof

Andrew C. Chan; Nathaniel C. Gordon; Robert F. Kelley; Michael F. T. Koehler; Melissa A. Starovasnik


Archive | 2006

Methods and compositions for targeting polyubiquitin

Nathaniel C. Gordon; Robert F. Kelley; Anh Pham; Sarah G. Hymowitz


Archive | 2005

BLy antagonists and uses thereof

Andrew Chen-yuen Chan; Nathaniel C. Gordon; Robert F. Kelley; Michael F. T. Koehler; Melissa A. Starovasnik

Collaboration


Dive into the Nathaniel C. Gordon's collaboration.

Researchain Logo
Decentralizing Knowledge