Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mengkun Tian is active.

Publication


Featured researches published by Mengkun Tian.


ACS Nano | 2015

Structure and Formation Mechanism of Black TiO2 Nanoparticles

Mengkun Tian; Masoud Mahjouri-Samani; Gyula Eres; Ritesh Sachan; Mina Yoon; Matthew F. Chisholm; Kai Wang; Alexander A. Puretzky; Christopher M. Rouleau; David B. Geohegan; Gerd Duscher

The remarkable properties of black TiO2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO2 nanoparticles consists of a disordered Ti2O3 shell. The measurements show a transition region that connects the disordered Ti2O3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitial atoms, followed by an ordered reconstruction layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti2O3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti2O3, which is a narrow-band-gap semiconductor. As a stoichiometric compound of the lower oxidation state Ti(3+) it is expected to be a more robust atomic structure than oxygen-deficient TiO2 for preserving and stabilizing Ti(3+) surface species that are the key to the enhanced photocatalytic activity of black TiO2.


ACS Nano | 2016

Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy

Kai Wang; Bing Huang; Mengkun Tian; Frank Ceballos; Ming-Wei Lin; Masoud Mahjouri-Samani; Abdelaziz Boulesbaa; Alexander A. Puretzky; Christopher M. Rouleau; Mina Yoon; Hui Zhao; Kai Xiao; Gerd Duscher; David B. Geohegan

van der Waals (vdW) heterostructures are promising building blocks for future ultrathin electronics. Fabricating vdW heterostructures by stamping monolayers at arbitrary angles provides an additional range of flexibility to tailor the resulting properties than could be expected by direct growth. Here, we report fabrication and comprehensive characterizations of WSe2/WS2 bilayer heterojunctions with various twist angles that were synthesized by artificially stacking monolayers of WS2 and WSe2 grown by chemical vapor deposition. After annealing the WSe2/WS2 bilayers, Raman spectroscopy reveals interlayer coupling with the appearance of a mode at 309.4 cm(-1) that is sensitive to the number of WSe2 layers. This interlayer coupling is associated with substantial quenching of the intralayer photoluminescence. In addition, microabsorption spectroscopy of WSe2/WS2 bilayers revealed spectral broadening and shifts as well as a net ∼10% enhancement in integrated absorption strength across the visible spectrum with respect to the sum of the individual monolayer spectra. The observed broadening of the WSe2 A exciton absorption band in the bilayers suggests fast charge separation between the layers, which was supported by direct femtosecond pump-probe spectroscopy. Density functional calculations of the band structures of the bilayers at different twist angles and interlayer distances found robust type II heterojunctions at all twist angles, and predicted variations in band gap for particular atomistic arrangements. Although interlayer excitons were indicated using femtosecond pump-probe spectroscopy, photoluminescence and absorption spectroscopies did not show any evidence of them, suggesting that the interlayer exciton transition is very weak. However, the interlayer coupling for the WSe2/WS2 bilayer heterojunctions indicated by substantial PL quenching, enhanced absorption, and rapid charge transfer was found to be insensitive to the relative twist angle, indicating that stamping provides a robust approach to realize reliable optoelectronics.


Nano Letters | 2016

Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2−x Crystals

Masoud Mahjouri-Samani; Liangbo Liang; Akinola D. Oyedele; Yong-Sung Kim; Mengkun Tian; Nicholas C.P. Cross; Kai Wang; Ming-Wei Lin; Abdelaziz Boulesbaa; Christopher M. Rouleau; Alexander A. Puretzky; Kai Xiao; Mina Yoon; Gyula Eres; Gerd Duscher; Bobby G. Sumpter; David B. Geohegan

Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. Here, we demonstrate the growth of MoSe2-x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ∼20%, that exhibit a remarkable transition in electrical transport properties from n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ∼250 cm(-1) appears, and the A1g Raman characteristic mode at 240 cm(-1) softens toward ∼230 cm(-1) which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. First-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.


ACS Nano | 2014

Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

Masoud Mahjouri-Samani; Mengkun Tian; Kai Wang; Abdelaziz Boulesbaa; Christopher M. Rouleau; Alexander A. Puretzky; Michael A. McGuire; Bernadeta R. Srijanto; Kai Xiao; Gyula Eres; Gerd Duscher; David B. Geohegan

Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor-phase synthesis. Here, we demonstrate a method to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (∼100 μm lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.


RSC Advances | 2017

Hybrid nanocomposites of nanostructured Co3O4 interfaced with reduced/nitrogen-doped graphene oxides for selective improvements in electrocatalytic and/or supercapacitive properties

Sheng Hu; Erick L. Ribeiro; Seyyed Ali Davari; Mengkun Tian; Dibyendu Mukherjee; Bamin Khomami

Performance enhancements in next-generation electrochemical energy storage/conversion devices require the design of new classes of nanomaterials that exhibit unique electrocatalytic and supercapacitive properties. To this end, we report the use of laser ablation synthesis in solution (LASiS) operated with cobalt as the target in graphene oxide (GO) solution in tandem with two different post-treatments to manufacture three kinds of hybrid nanocomposites (HNCs) namely, (1) Co3O4 nanoparticle (NP)/reduced graphene oxide (rGO), (2) Co3O4 nanorod (NR)/rGO, and (3) Co3O4 NP/nitrogen-doped graphene oxide (NGO). FTIR and Raman spectroscopic studies indicate that both chemical and charge-driven interactions are partially responsible for embedding the Co3O4 NPs/NRs into the various GO films. We tune the selective functionalities of the as-synthesized HNCs as oxygen reduction reaction (ORR) catalysts and/or supercapacitors by tailoring their structure–property relationships. Specifically, the nitrogen doping in the NP/NGO HNC samples promotes higher electron conductivity while hindering aggregation between 0D CoO NPs that are partially reshaped into Co3O4 nanocubes due to induced surface strain energies. Our results indicate that such interfacial energetics and arrangements lead to superior ORR electrocatalytic activities. On the other hand, the interconnecting 1D nanostructures in the NR/rGO HNCs benefit charge transport and electrolyte diffusion at the electrode–electrolyte interfaces, thereby promoting their supercapacitive properties. The NP/rGO HNCs exhibit intermediate functionalities towards both ORR catalysis and supercapacitance.


ACS Applied Materials & Interfaces | 2017

Black Anatase Formation by Annealing of Amorphous Nanoparticles and the Role of the Ti2O3 Shell in Self-Organized Crystallization by Particle Attachment

Mengkun Tian; Masoud Mahjouri-Samani; Kai Wang; Alexander A. Puretzky; David B. Geohegan; Wesley Daniel Tennyson; Nicholas C.P. Cross; Christopher M. Rouleau; Thomas A. Zawodzinski; Gerd Duscher; Gyula Eres

We use amorphous titania nanoparticle networks produced by pulsed laser vaporization at room temperature as a model system for understanding the mechanism of formation of black titania. Here, we characterize the transformation of amorphous nanoparticles by annealing in pure Ar at 400 °C, the lowest temperature at which black titania was observed. Atomic resolution electron microscopy methods and electron energy loss spectroscopy show that the onset of crystallization occurs by nucleation of an anatase core that is surrounded by an amorphous Ti2O3 shell. The formation of the metastable anatase core before the thermodynamically stable rutile phase occurs according to the Ostwald phase rule. In the second stage the particle size increases by coalescence of already crystallized particles by a self-organized mechanism of crystallization by particle attachment. We show that the Ti2O3 shell plays a critical role in both black titania transformation and functionality. At 400 °C, Ti2O3 hinders the agglomeration of neighboring particles to maintain a high surface-to-volume ratio that is beneficial for enhanced photocatalytic activity. In agreement with previous results, the thin Ti2O3 surface layer acts as a narrow bandgap semiconductor in concert with surface defects to enhance the photocatalytic activity. Our results demonstrate that crystallization by particle attachment can be a highly effective mechanism for optimizing photocatalytic efficiency by controlling the phase, composition, and particle size distribution in a wide range of self-doped defective TiO2 architectures simply by varying the annealing conditions of amorphous nanoparticles.


Proceedings of SPIE | 2014

Catalytic nanoparticles for carbon nanotube growth synthesized by through thin film femtosecond laser ablation

Christopher M. Rouleau; Mengkun Tian; Alexander A. Puretzky; Masoud Mahjouri-Samani; Gerd Duscher; David B. Geohegan

The synthesis of metal nanoparticles by femtosecond laser vaporization of nm-thickness metal films is explored with the goal of comparing the salient features of femtosecond-based through thin film laser ablation (TTFA) to that of ns TTFA, and testing the feasibility of direct synthesis of clean nanoparticle alloys to explore the synthesis of carbon nanotubes by chemical vapor deposition. It is demonstrated that evaporated metal films are cleanly removed from quartz substrates using the technique, producing a highly forward-directed plume of nanoparticles (angle of divergence of ~2.5°) which were cleanly deposited onto different supports for analysis. TEM showed the nanoparticles were spherical with diameters that ranged from a few nm to hundreds of nm in a bimodal fashion. Unlike ns-TTFA, it was found that raising the pressure had no effect on the intensity of the smaller mode within the distribution, suggesting that nanoparticle formation by gas phase condensation was not at play under the present conditions. Close examination of size distributions from a 20 and 10nm Pt film revealed an 80nm downshift in the position of the large mode within the distribution, suggesting film thickness may provide a route to controlling the modal distribution of nanoparticles produced by this method. Lastly, particles sourced by a Fe/Mo bilayer film were found to be effective in growing single wall carbon nanotubes by atmospheric chemical vapor deposition, indicating sufficiently small and catalytically active particles were produced.


ACS Applied Materials & Interfaces | 2017

Surface Mechanoengineering of a Zr-Based Bulk Metallic Glass via Ar-Nanobubble Doping To Probe Cell Sensitivity to Rigid Materials

Lu Huang; Mengkun Tian; Dong Wu; Gerd Duscher; Peter K. Liaw; Wei He

In this study, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al-Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation because of the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zr-based BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues, accompanied by the potential effects of other surface properties (i.e., roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface-mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechanoengineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine-tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.


Ultramicroscopy | 2018

Measuring the areal density of nano-materials by electron energy-loss spectroscopy

Mengkun Tian; Ondrej Dyck; Jingxuan Ge; Gerd Duscher

Thickness measurements of nanomaterials are usually performed using transmission electron microscopy (TEM) techniques such as convergent beam electron diffraction (CBED) patterns analysis and the log-ratio method based on electron energy-loss spectroscopy (EELS) spectrum. However, it is challenging to obtain both the thickness and elemental information, especially in non-crystalline materials or for very thin samples. In this work, we establish a series of procedures to calculate the areal density of the material by directly measuring the inelastic scattering probability in a thin sample. Core-loss EELS are fit with a quantitative model to extract atomic areal density. Knowledge of one of the parameters (volume density or sample thickness) allows a measurement of the other. The absolute error between the known thicknesses and those measured was less than 4% using two-dimensional materials with a well-defined thickness as test samples, which is much better than the log-ratio method for very thin samples. One promising advantage of this method is the thickness/areal density determination in mixed phase/element systems. We use Ag-Co bimetallic triangles and black rutile as examples to calculate the thickness map in mixture systems in different cases. We also demonstrate this technique can be applied to measure the argon gas density in spherical cavities. This allows a temperature vs pressure curve to be obtained and illustrates the unique capability of this technique.


Archive | 2018

Laser Synthesis, Processing, and Spectroscopy of Atomically-Thin Two Dimensional Materials

David B. Geohegan; Alex A. Puretzky; Aziz Boulesbaa; Gerd Duscher; Gyula Eres; Xufan Li; Liangbo Liang; Masoud Mahjouri-Samani; Chris Rouleau; Wesley Daniel Tennyson; Mengkun Tian; Kai Wang; Kai Xiao; Mina Yoon

Atomically-thin two-dimensional (2D) materials display widely varying electronic and vibronic properties compared to their bulk counterparts. Laser interactions with 2D materials are central to their development. Here we attempt to overview recent progress and define the current challenges in the broad range of laser interactions involved in the synthesis, processing, and optical characterization of 2D materials as the field has emerged from graphene and h-BN to encompass a multitude of other atomically-thin semiconducting, superconducting, thermoelectric, etc. 2D materials as “building blocks” for future energy applications and devices. Here, we first focus on challenges in the synthesis and processing of mainly semiconducting 2D layers for optoelectronics, and the advantages offered by non-equilibrium laser processing. Then, we review the optical characterization techniques that are being developed to serve as remote probes of their electronic and vibronic properties, as well as their structure, stacking, and atomistic alignment. Together, examples will be shown how these developments are already being merged to fulfill the promise for tailored synthesis and assembly of these exquisite materials with real-time in situ control of structure and optoelectronic properties.

Collaboration


Dive into the Mengkun Tian's collaboration.

Top Co-Authors

Avatar

Gerd Duscher

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

David B. Geohegan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Puretzky

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Wang

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Gyula Eres

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kai Xiao

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mina Yoon

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge