Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Hollingsworth is active.

Publication


Featured researches published by Michael A. Hollingsworth.


Nature Reviews Cancer | 2004

Mucins in cancer: protection and control of the cell surface

Michael A. Hollingsworth; Benjamin Swanson

Mucins — large extracellular proteins that are heavily glycosylated with complex oligosaccharides — establish a selective molecular barrier at the epithelial surface and engage in morphogenetic signal transduction. Alterations in mucin expression or glycosylation accompany the development of cancer and influence cellular growth, differentiation, transformation, adhesion, invasion and immune surveillance. Mucins are used as diagnostic markers in cancer, and are under investigation as therapeutic targets for cancer.


Nature | 2015

Tumour exosome integrins determine organotropic metastasis.

Ayuko Hoshino; Bruno Costa-Silva; Tang-Long Shen; Goncalo Rodrigues; Ayako Hashimoto; Milica Tesic Mark; Henrik Molina; Shinji Kohsaka; Angela Di Giannatale; Sophia Ceder; Swarnima Singh; Caitlin Williams; Nadine Soplop; Kunihiro Uryu; Lindsay A. Pharmer; Tari A. King; Linda Bojmar; Alexander E. Davies; Yonathan Ararso; Tuo Zhang; Haiying Zhang; Jonathan M. Hernandez; Joshua Mitchell Weiss; Vanessa D. Dumont-Cole; Kimberly Kramer; Leonard H. Wexler; Aru Narendran; Gary K. Schwartz; John H. Healey; Per Sandström

Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression

David R. Mack; Sonia Michail; Shu Wei; Laura McDougall; Michael A. Hollingsworth

Probiotic agents, live microorganisms with beneficial effects for the host, may offer an alternative to conventional antimicrobials in the treatment and prevention of enteric infections. The probiotic agents Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG quantitatively inhibited the adherence of an attaching and effacing pathogenic Escherichia coli to HT-29 intestinal epithelial cells but did not inhibit adherence to nonintestinal HEp-2 cells. HT-29 cells were grown under conditions that induced high levels of either MUC2 or MUC3 mRNA, but HEp-2 cells expressed only minimal levels of MUC2 and no MUC3 mRNA. Media enriched for MUC2 and MUC3 mucin were added exogenously to binding assays and were shown to be capable of inhibiting enteropathogen adherence to HEp-2 cells. Incubation of L. plantarum 299v with HT-29 cells increased MUC2 and MUC3 mRNA expression levels. From these in vitro studies, we propose the hypothesis that the ability of probiotic agents to inhibit adherence of attaching and effacing organisms to intestinal epithelial cells is mediated through their ability to increase expression of MUC2 and MUC3 intestinal mucins.Probiotic agents, live microorganisms with beneficial effects for the host, may offer an alternative to conventional antimicrobials in the treatment and prevention of enteric infections. The probiotic agents Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG quantitatively inhibited the adherence of an attaching and effacing pathogenic Escherichia coli to HT-29 intestinal epithelial cells but did not inhibit adherence to nonintestinal HEp-2 cells. HT-29 cells were grown under conditions that induced high levels of either MUC2 or MUC3 mRNA, but HEp-2 cells expressed only minimal levels of MUC2 and no MUC3 mRNA. Media enriched for MUC2 and MUC3 mucin were added exogenously to binding assays and were shown to be capable of inhibiting enteropathogen adherence to HEp-2 cells. Incubation of L. plantarum 299v with HT-29 cells increased MUC2 and MUC3 mRNA expression levels. From these in vitro studies, we propose the hypothesis that the ability of probiotic agents to inhibit adherence of attaching and effacing organisms to intestinal epithelial cells is mediated through their ability to increase expression of MUC2 and MUC3 intestinal mucins.


American Journal of Pathology | 2002

Discovery of Novel Tumor Markers of Pancreatic Cancer using Global Gene Expression Technology

Christine A. Iacobuzio-Donahue; Anirban Maitra; Grace L. Shen-Ong; Tjarda van Heek; Raheela Ashfaq; Renee Meyer; Kimberly Walter; Karin D. Berg; Michael A. Hollingsworth; John L. Cameron; Charles J. Yeo; Scott E. Kern; Michael Goggins; Ralph H. Hruban

Despite several advances in our basic understanding and in the clinical management of pancreatic cancer, virtually all patients who will be diagnosed with pancreatic cancer will die from this disease. The high mortality of pancreatic cancer is predominantly because of diagnosis at an advanced stage of disease and a lack of effective treatments. We used the Gene Logic Inc. BioExpress platform and Affymetrix GeneChip arrays to identify genes differentially expressed in pancreatic cancer. cDNA was prepared from samples of normal pancreas (n = 11), normal gastrointestinal mucosa (n = 22), resected pancreas cancer tissues (n = 14), and pancreas cancer cell lines (n = 8), and was hybridized to the complete Affymetrix Human Genome U95 GeneChip set (arrays U95 A, B, C, D, and E) for simultaneous analysis of 60,000 cDNA fragments, with 12,000 fragments covering full-length genes and 48,000 fragments covering expressed sequence tags (ESTs). Genes expressed at levels at least fivefold greater in the pancreatic cancers ascompared to normal tissues were identified. Serial analysis of gene expression (SAGE) libraries (http://www.ncbi.nlm.nih.gov/SAGE/) of two normal pancreatic ductal cell cultures (HX and H126) were used to exclude genes expressed in the normal ducts (more than five tags per library). Differential expression of selected candidate genes was validated by immunohistochemical analysis (n = 3), by in situ hybridization (n = 1), and by reverse transcriptase-polymerase chain reaction (n = 8). One hundred eighty fragments were identified as having fivefold or greater expression levels in pancreas cancer specimens as compared to normal tissue, of which 124 corresponded to known genes and 56 to ESTs. Of these 124 fragments, 10 genes were represented by two or more fragments, resulting in 107 known genes identified as differentially expressed in pancreatic cancer. An additional 10 genes were expressed in the SAGE libraries of normal pancreatic duct epithelium, and were excluded from further analysis. A literature search indicated that 28 of the remaining 97 genes have been reported in association with pancreatic cancer, validating this approach. The remaining 69 genes have not been implicated in pancreatic cancer before, and have immediate potential as novel therapeutic targets and tumor markers of pancreatic cancer.


Clinical Cancer Research | 2008

Sonic hedgehog promotes desmoplasia in pancreatic cancer

Jennifer M. Bailey; Benjamin Swanson; Tomofumi Hamada; John P. Eggers; Pankaj K. Singh; Thomas Caffery; Michel M. Ouellette; Michael A. Hollingsworth

Purpose: We investigated the contribution of Sonic hedgehog (SHH) to pancreatic cancer progression. Experimental Design: We expressed SHH in a transformed primary ductal-derived epithelial cell line from the human pancreas, transformed hTert-HPNE (T-HPNE), and evaluated the effects on tumor growth. We also directly inhibited the activity of SHH in vivo by administering a blocking antibody to mice challenged orthotopically with the Capan-2 pancreatic cancer cell line, which is known to express SHH and form moderately differentiated tumors in nude mice. Results: Our data provide evidence that expression of SHH influences tumor growth by contributing to the formation of desmoplasia in pancreatic cancer. We further show that SHH affects the differentiation and motility of human pancreatic stellate cells and fibroblasts. Conclusions: These data suggest that SHH contributes to the formation of desmoplasia in pancreatic cancer, an important component of the tumor microenvironment.


American Journal of Clinical Pathology | 2002

MUC4 Expression Increases Progressively in Pancreatic Intraepithelial Neoplasia

Michael J. Swartz; Surinder K. Batra; Grish C. Varshney; Michael A. Hollingsworth; Charles J. Yeo; John L. Cameron; Robb E. Wilentz; Ralph H. Hruban; Pedram Argani

Pancreatic adenocarcinoma is believed to develop from histologically identifiable intraductal lesions known as pancreatic intraepithelial neoplasias (PanINs) that undergo a series of architectural, cytologic, and genetic changes, a progression model similar to the adenoma-carcinoma sequence in the colon. The apomucin MUC4 has been implicated in invasive pancreatic adenocarcinoma. MUC4 expression is not detectable at the RNA level in normal pancreas but is detectable at high levels in invasive pancreatic adenocarcinoma. We documented the pattern of expression of MUC4 in PanINs by studying a series of 71 PanIN lesions immunohistochemically using a new monoclonal antibody to MUC4. Five (17%) of 30 PanIN-1 lesions, 10 (36%) of 28 PanIN-2 lesions, 11 (85%) of 13 PanIN-3 lesions, and 25 (89%) of 28 invasive adenocarcinomas labeled with the MUC4 antibody used in the study. In addition, afew nonneoplastic lesions labeled with the MUC4 antibody, including reactive ducts in chronic pancreatitis, atrophic ducts filled with inspissated secretions, and ducts showing squamous metaplasia. Our data help establish the patterns of MUC4 expression in neoplastic precursors in the pancreas and add further support to the progression model for pancreatic adenocarcinoma.


Journal of Biological Chemistry | 1998

Cloning of a Human UDP-N-Acetyl-α-d-Galactosamine:PolypeptideN-Acetylgalactosaminyltransferase That Complements Other GalNAc-Transferases in Complete O-Glycosylation of the MUC1 Tandem Repeat

Eric Paul Bennett; Helle Hassan; Ulla Mandel; Ekatarina Mirgorodskaya; Peter Roepstorff; Joy Burchell; Joyce Taylor-Papadimitriou; Michael A. Hollingsworth; G.F.M. Merkx; Ad Geurts van Kessel; Hans Eiberg; Rudi Steffensen; Henrik Clausen

A fourth human UDP-GalNAc:polypeptideN-acetylgalactosaminyltransferase, designated GalNAc-T4, was cloned and expressed. The genomic organization of GalNAc-T4 is distinct from GalNAc-T1, -T2, and -T3, which contain multiple coding exons, in that the coding region is contained in a single exon. GalNAc-T4 was placed at human chromosome 12q21.3-q22 by in situ hybridization and linkage analysis. GalNAc-T4 expressed in Sf9 cells or in a stably transfected Chinese hamster ovary cell line exhibited a unique acceptor substrate specificity. GalNAc-T4 transferred GalNAc to two sites in the MUC1 tandem repeat sequence (Ser in GVTSA and Thr in PDTR) using a 24-mer glycopeptide with GalNAc residues attached at sites utilized by GalNAc-T1, -T2, and -T3 (TAPPAHGVTSAPDTRPAPGSTAPPA, GalNAc attachment sites underlined). Furthermore, GalNAc-T4 showed the best kinetic properties with an O-glycosylation site in the P-selectin glycoprotein ligand-1 molecule. Northern analysis of human organs revealed a wide expression pattern. Immunohistology with a monoclonal antibody showed the expected Golgi-like localization in salivary glands. A single base polymorphism, G1516A (Val to Ile), was identified (allele frequency 34%). The function of GalNAc-T4 complements other GalNAc-transferases in O-glycosylation of MUC1 showing that glycosylation of MUC1 is a highly ordered process and changes in the repertoire or topology of GalNAc-transferases will result in altered pattern of O-glycan attachments.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- And tissue-specific microRNAs

Eric Londina; Phillipe Lohera; Aristeidis G. Telonis; Kevin Quann; Peter M. Clark; Yi Jinga; Eleftheria Hatzimichael; Yohei Kirino; Shozo Honda; Michelle Lally; Bharat Ramratnam; Clay E.S. Comstock; Karen E. Knudsen; Leonard G. Gomella; George L. Spaeth; Lisa A Hark; L. Jay Katz; Agnieszka K. Witkiewicz; Abdolmohamad Rostami; Sergio A. Jimenez; Michael A. Hollingsworth; Jen Jen Yeh; Chad A. Shaw; Steven E. McKenzie; Paul F. Bray; Peter T. Nelson; Simona Zupo; Katrien Van Roosbroeck; Michael J. Keating; Georg A. Calin

Significance MicroRNAs (miRNAs) are small ∼22-nt RNAs that are important regulators of posttranscriptional gene expression. Since their initial discovery, they have been shown to be involved in many cellular processes, and their misexpression is associated with disease etiology. Currently, nearly 2,800 human miRNAs are annotated in public repositories. A key question in miRNA research is how many miRNAs are harbored by the human genome. To answer this question, we examined 1,323 short RNA sequence samples and identified 3,707 novel miRNAs, many of which are human-specific and tissue-specific. Our findings suggest that the human genome expresses a greater number of miRNAs than has previously been appreciated and that many more miRNA molecules may play key roles in disease etiology. Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.


Journal of Cellular Biochemistry | 2007

Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins

Jennifer M. Bailey; Pankaj K. Singh; Michael A. Hollingsworth

This review will highlight the significance of three critical pathways in developmental biology and our emerging understanding of their roles in regulating tumor metastasis: Bone morphogenic protein (BMP), Notch and Sonic hedgehog (SHH). We will discuss parallels between their known roles in development and how these processes can be used by tumor cells to create microenvironments that enhance tumor metastasis. That tumor cells usurp pathways critical to the developing embryo is not surprising, as many of the normal developmental programs include processes that are also seen during tumor progression to a metastatic phenotype, including epithelial to mesenchymal transition (EMT), tissue specific morphogenesis, cellular motility and invasion. BMPs are involved in EMT, contribute to tissue specific morphogenesis, and are expressed in highly‐metastatic tumor cells. BMPs have also been hypothesized to have a role in the establishment of a pre‐neoplastic niche. Notch and SHH facilitate neovascularization, angiogenesis, EMT and can contribute to the maintenance of highly‐metastatic tumor stem cells. J. Cell. Biochem. 102: 829–839, 2007.


Journal of Biological Chemistry | 1997

Oligosaccharides Expressed on MUC1 Produced by Pancreatic and Colon Tumor Cell Lines

Michael D. Burdick; Ann Harris; Colm J. Reid; Takeshi Iwamura; Michael A. Hollingsworth

MUC1 is expressed at the apical surface of ductal epithelia of tissues, including breast, pancreas, airway, and the gastrointestinal tract, where its functions include lubrication and protection of the epithelia. In addition, roles for MUC1 have been suggested in both adhesive and antiadhesive properties of tumor cells, and extensive O-glycosylation of the MUC1 tandem repeat domain may contribute to these functions. Little information is available on the specific O-glycosylation of MUC1. One problem in identifying different MUC1 glycoforms has been that monoclonal antibodies raised against the MUC1 core protein recognize epitopes in the tandem repeat domain, which is often glycosylated to an extent that obscures these epitopes. We developed an epitope-tagged form of MUC1 that allowed the detection of multiple MUC1 glycoforms and established the presence of a number of important blood group and tumor-associated carbohydrate antigens on MUC1 expressed by two pancreatic tumor cell lines (Panc-1 and S2-013) and two colon tumor cell lines (Caco-2 and HT-29). Antigens detected include sialyl-Lewisa, sialyl-Lewisc, sialyl-Lewisx, and sialyl-Tn.

Collaboration


Dive into the Michael A. Hollingsworth's collaboration.

Top Co-Authors

Avatar

Surinder K. Batra

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pankaj K. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paul M. Grandgenett

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Caffrey

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Prakash Radhakrishnan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Henrik Clausen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Ann Harris

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Yu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Maria M. Steele

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge