Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prakash Radhakrishnan is active.

Publication


Featured researches published by Prakash Radhakrishnan.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Immature truncated O-glycophenotype of cancer directly induces oncogenic features

Prakash Radhakrishnan; Sally Dabelsteen; Frey Brus Madsen; Chiara Francavilla; Katharina L. Kopp; Catharina Steentoft; Sergey Y. Vakhrushev; J. Olsen; Lars Kai Hansen; Eric P. Bennett; Anders Woetmann; Guangliang Yin; Longyun Chen; Haiyan Song; Mads Bak; Ryan A. Hlady; Staci L. Peters; Rene Opavsky; Christenze Thode; Klaus Qvortrup; Katrine T. Schjoldager; Henrik Clausen; Michael A. Hollingsworth; Hans H. Wandall

Significance Cancer cells characteristically express proteins with immature O-glycosylation, but how and why cancer cells express immature O-glycans has remained poorly understood. Here, we report that one prevalent mechanism in pancreatic cancer is epigenetic silencing, rather than somatic mutations in a key chaperone, core 1 β3-Gal-T-specific molecular chaperone (COSMC), required for mature elongated O-glycosylation. We also demonstrate, with the use of well-defined cell systems generated by precise gene editing, that the aberrant O-glycophenotype by itself induces oncogenic features with enhanced growth and invasion. Our study suggests that the characteristic aberrant O-glycophenotype is critical for the development and behavior of cancer and further provides support for immunotherapeutic strategies that target aberrant O-glycans. Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 β3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures.


Proceedings of the National Academy of Sciences of the United States of America | 2012

MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer

Nina V. Chaika; Teklab Gebregiworgis; Michelle E. Lewallen; Vinee Purohit; Prakash Radhakrishnan; Xiang Liu; Bo Zhang; Kamiya Mehla; Roger B. Brown; Thomas C. Caffrey; Fang Yu; Keith R. Johnson; Robert Powers; Michael A. Hollingsworth; Pankaj K. Singh

Aberrant glucose metabolism is one of the hallmarks of cancer that facilitates cancer cell survival and proliferation. Here, we demonstrate that MUC1, a large, type I transmembrane protein that is overexpressed in several carcinomas including pancreatic adenocarcinoma, modulates cancer cell metabolism to facilitate growth properties of cancer cells. MUC1 occupies the promoter elements of multiple genes directly involved in glucose metabolism and regulates their expression. Furthermore, MUC1 expression enhances glycolytic activity in pancreatic cancer cells. We also demonstrate that MUC1 expression enhances in vivo glucose uptake and expression of genes involved in glucose uptake and metabolism in orthotopic implantation models of pancreatic cancer. The MUC1 cytoplasmic tail is known to activate multiple signaling pathways through its interactions with several transcription factors/coregulators at the promoter elements of various genes. Our results indicate that MUC1 acts as a modulator of the hypoxic response in pancreatic cancer cells by regulating the expression/stability and activity of hypoxia-inducible factor-1α (HIF-1α). MUC1 physically interacts with HIF-1α and p300 and stabilizes the former at the protein level. By using a ChIP assay, we demonstrate that MUC1 facilitates recruitment of HIF-1α and p300 on glycolytic gene promoters in a hypoxia-dependent manner. Also, by metabolomic studies, we demonstrate that MUC1 regulates multiple metabolite intermediates in the glucose and amino acid metabolic pathways. Thus, our studies indicate that MUC1 acts as a master regulator of the metabolic program and facilitates metabolic alterations in the hypoxic environments that help tumor cells survive and proliferate under such conditions.


Cancer and Metabolism | 2014

Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

Surendra K. Shukla; Teklab Gebregiworgis; Vinee Purohit; Nina V. Chaika; Venugopal Gunda; Prakash Radhakrishnan; Kamiya Mehla; Iraklis I. Pipinos; Robert Powers; Fang Yu; Pankaj K. Singh

BackgroundAberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy.ResultsWe observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia.ConclusionsThus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss.


Biochemical and Biophysical Research Communications | 2011

TNFα enhances the motility and invasiveness of prostatic cancer cells by stimulating the expression of selective glycosyl- and sulfotransferase genes involved in the synthesis of selectin ligands

Prakash Radhakrishnan; Vishwanath B. Chachadi; Ming Fong Lin; Rakesh K. Singh; Reiji Kannagi; Pi Wan Cheng

Sialyl Lewis x (sLe(x)) plays an important role in cancer metastasis. But, the mechanism for its production in metastatic cancers remains unclear. The objective of current study was to examine the effects of a proinflammatory cytokine on the expression of glycosyltransferase and sulfotransferase genes involved in the synthesis of selectin ligands in a prostate cancer cell line. Androgen-independent human lymph node-derived metastatic prostate cancer cells (C-81 LNCaP), which express functional androgen receptor and mimic the castration-resistant advanced prostate cancer, were used. TNFα treatment of these cells increased their binding to P-, E- and L-selectins, anti-sLe(x) antibody, and anti-6-sulfo-sialyl Lewis x antibody by 12%, 240%, 43%, 248% and 21%, respectively. Also, the expression of C2GnT-1, B4GalT1, GlcNAc6ST3, and ST3Gal3 genes was significantly upregulated. Further treatment of TNFα-treated cells with either anti-sLe(x) antibody or E-selectin significantly suppressed their in vitro migration (81% and 52%, respectively) and invasion (45% and 56%, respectively). Our data indicate that TNFα treatment enhances the motility and invasion properties of LNCaP C-81 cells by increasing the formation of selectin ligands through stimulation of the expression of selective glycosyl- and sulfotransferase genes. These results support the hypothesis that inflammation contributes to cancer metastasis.


PLOS ONE | 2013

MicroRNA-200c Modulates the Expression of MUC4 and MUC16 by Directly Targeting Their Coding Sequences in Human Pancreatic Cancer

Prakash Radhakrishnan; Ashley M. Mohr; Paul M. Grandgenett; Maria M. Steele; Surinder K. Batra; Michael A. Hollingsworth

Transmembrane mucins, MUC4 and MUC16 are associated with tumor progression and metastatic potential in human pancreatic adenocarcinoma. We discovered that miR-200c interacts with specific sequences within the coding sequence of MUC4 and MUC16 mRNAs, and evaluated the regulatory nature of this association. Pancreatic cancer cell lines S2.028 and T3M-4 transfected with miR-200c showed a 4.18 and 8.50 fold down regulation of MUC4 mRNA, and 4.68 and 4.82 fold down regulation of MUC16 mRNA compared to mock-transfected cells, respectively. A significant reduction of glycoprotein expression was also observed. These results indicate that miR-200c overexpression regulates MUC4 and MUC16 mucins in pancreatic cancer cells by directly targeting the mRNA coding sequence of each, resulting in reduced levels of MUC4 and MUC16 mRNA and protein. These data suggest that, in addition to regulating proteins that modulate EMT, miR-200c influences expression of cell surface mucins in pancreatic cancer.


PLOS ONE | 2013

MUC1 Regulates Expression of Multiple microRNAs Involved in Pancreatic Tumor Progression, Including the miR-200c/141 Cluster

Ashley M. Mohr; Jennifer M. Bailey; Michelle Lewallen; Xiang Liu; Prakash Radhakrishnan; Fang Yu; William E. Tapprich; Michael A. Hollingsworth

MUC1 is a transmembrane glycoprotein that modulates transcription via its cytoplasmic domain. We evaluated the capacity of MUC1 to regulate the global transcription of microRNAs in pancreatic cancer cells expressing MUC1. Results indicated that MUC1 regulated expression of at least 103 microRNAs. We evaluated further regulation of the microRNA transcript cluster miR-200c/141, which was among the most highly regulated microRNAs. We found that MUC1 directly interacted with ZEB1, a known transcriptional repressor of the miR-200c/141 cluster, at the promoter of miR-200c/141, and further reduced transcript production. These data indicate that signaling through MUC1 influences cancer progression by regulating transcription of microRNAs that are associated with the process of metastasis.


Journal of Medicinal Chemistry | 2016

Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure–Activity Relationship Study

Sandeep Rana; Elizabeth C. Blowers; Calvin Tebbe; Jacob I. Contreras; Prakash Radhakrishnan; Smitha Kizhake; Tian Zhou; Rajkumar N. Rajule; Jamie L. Arnst; Adnan R. Munkarah; Ramandeep Rattan; Amarnath Natarajan

Design, synthesis, and evaluation of α-methylene-γ-butyrolactone analogues and their evaluation as anticancer agents is described. SAR identified a spirocyclic analogue 19 that inhibited TNFα-induced NF-κB activity, cancer cell growth and tumor growth in an ovarian cancer model. A second iteration of synthesis and screening identified 29 which inhibited cancer cell growth with low-μM potency. Our data suggest that an isatin-derived spirocyclic α-methylene-γ-butyrolactone is a suitable core for optimization to identify novel anticancer agents.


Oncogenesis | 2014

MUC1 regulates cyclin D1 gene expression through p120 catenin and β-catenin.

Xiaojuan Liu; Thomas C. Caffrey; Maria M. Steele; Andrea Mohr; Prerna Singh; Prakash Radhakrishnan; David L. Kelly; Yuan Edward Wen; Michael A. Hollingsworth

MUC1 interacts with β-catenin and p120 catenin to modulate WNT signaling. We investigated the effect of overexpressing MUC1 on the regulation of cyclin D1, a downstream target for the WNT/β-catenin signaling pathway, in two human pancreatic cancer cell lines, Panc-1 and S2-013. We observed a significant enhancement in the activation of cyclin D1 promoter-reporter activity in poorly differentiated Panc1.MUC1F cells that overexpress recombinant MUC1 relative to Panc-1.NEO cells, which express very low levels of endogenous MUC1. In stark contrast, cyclin D1 promoter activity was not affected in moderately differentiated S2-013.MUC1F cells that overexpressed recombinant MUC1 relative to S2-013.NEO cells that expressed low levels of endogenous MUC1. The S2-013 cell line was recently shown to be deficient in p120 catenin. MUC1 is known to interact with P120 catenin. We show here that re-expression of different isoforms of p120 catenin restored cyclin D1 promoter activity. Further, MUC1 affected subcellular localization of p120 catenin in association with one of the main effectors of P120 catenin, the transcriptional repressor Kaiso, supporting the hypothesis that p120 catenin relieved transcriptional repression by Kaiso. Thus, full activation of cyclin D1 promoter activity requires β-catenin activation of TCF-lef and stabilization of specific p120 catenin isoforms to relieve the repression of KAISO. Our data show MUC1 enhances the activities of both β-catenin and p120 catenin.


International Journal of Cancer | 2013

Expression of core 3 synthase in human pancreatic cancer cells suppresses tumor growth and metastasis

Prakash Radhakrishnan; Paul M. Grandgenett; Ashley M. Mohr; Stephanie K. Bunt; Fang Yu; Sanjib Chowdhury; Michael A. Hollingsworth

Core 3‐derived glycans, a major type of O‐glycan expressed by normal epithelial cells of the gastrointestinal tract, are downregulated during malignancy because of loss of expression of functional β3‐N‐acetylglucosaminyltransferase‐6 (core 3 synthase). We investigated the expression of core 3 synthase in normal pancreas and pancreatic cancer and evaluated the biological effects of re‐expressing core 3 synthase in pancreatic cancer cells that had lost expression. We determined that pancreatic tumors and tumor cell lines have lost expression of core 3 synthase. Therefore, we re‐expressed core 3 synthase in human pancreatic cancer cells (Capan‐2 and FG) to investigate the contribution of core 3 glycans to malignant progression. Pancreatic cancer cells expressing core 3 synthase showed reduced in vitro cell proliferation, migration and invasion compared to vector control cells. Expression of core 3 O‐glycans induced altered expression of β1 integrin, decreased activation of focal adhesion kinase, led to the downregulation of expression of several genes including REG1α and FGFR3 and altered lamellipodia formation. The addition of a GlcNAc residue by core 3 synthase leads to the extension of the tumor‐associated Tn structure on MUC1. Orthotopic injection of FG cells expressing core 3 synthase into the pancreas of nude mice produced significantly smaller tumors and decreased metastasis to the surrounding tissues compared to vector control FG cells. These findings indicate that expression of core 3‐derived O‐glycans in pancreatic cancer cells suppresses tumor growth and metastasis through modulation of glycosylation of mucins and other cell surface and extracellular matrix proteins.


Cancer Research | 2014

Interactions between MUC1 and p120 Catenin Regulate Dynamic Features of Cell Adhesion, Motility, and Metastasis

Xiang Liu; Chunhui Yi; Yunfei Wen; Prakash Radhakrishnan; Jarrod Tremayne; Thongtan Dao; Keith R. Johnson; Michael A. Hollingsworth

The mechanisms by which MUC1 and p120 catenin contribute to progression of cancers from early transformation to metastasis are poorly understood. Here we show that p120 catenin ARM domains 1, 3-5, and 8 mediate interactions between p120 catenin and MUC1, and that these interactions modulate dynamic properties of cell adhesion, motility, and metastasis of pancreatic cancer cells. We also show that different isoforms of p120 catenin, when coexpressed with MUC1, create cells that exhibit distinct patterns of motility in culture (motility independent of cell adhesion, motility within a monolayer while exchanging contacts with other cells, and unified motility while maintaining static epithelial contacts) and patterns of metastasis. The results provide new insight into the dynamic interplay between cell adhesion and motility and the relationship of these to the metastatic process.

Collaboration


Dive into the Prakash Radhakrishnan's collaboration.

Top Co-Authors

Avatar

Michael A. Hollingsworth

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fang Yu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ashley M. Mohr

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kamiya Mehla

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nina V. Chaika

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pankaj K. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pi Wan Cheng

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Robert Powers

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Teklab Gebregiworgis

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Vinee Purohit

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge