Michael A. Lewis
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael A. Lewis.
Archive | 1993
Wayne G. Landis; Jane S. Hughes; Michael A. Lewis
This symposium was held April 14--16, 1991 in Atlantic City, New Jersey. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on environmental toxicology. A major theme in this volume is on ecological risk assessment. Topics focus on the following: ecological risk assessment under TSCA; evaluating ecological impacts at the population and community levels; biomarkers; marine toxicity and test methods; and methods development. Individual papers have been processed separately for inclusion in the appropriate data bases.
Environmental Pollution | 1995
Michael A. Lewis
Phytotoxicity data for aquatic plants have served a relatively minor role in regulatory decisions concerning the environmental hazard of most potential contaminants. A variety of phytotoxicity tests have been conducted with freshwater green algae, duckweed, blue-green algae, diatoms and rooted macrophytes (whole plants and seeds). Several test methods have been standardized for microalgae which are used primarily with chemicals, effluents, contaminated sediment elutriates and hazardous waste leachates. Current scientific understanding concerning the phytotoxic effects of these contaminants is based mostly on results for a few green algae. The greatest limitation of these results is their uncertain environmental relevance due to the large interspecific variation in response of standard algal test species and the unrealistic experimental test conditions. Results of the few field validation toxicity tests conducted to resolve this uncertainty have been chemical-specific and unpredictable. Aquatic vascular plants have been used less frequently than algae as test species. Duckweeds have been used more often than rooted submersed species but the uncertain nature of their sensitivities relative to animal and other plant species has limited their use. Regulatory interest in wetland protection, contaminated sediment evaluations and sediment quality criteria development will result in increased use of whole rooted plants and their seeds as test species. Overall, regardless of the test species, if phytotoxicity data are to be more available and effective in the hazard assessment process, additional information concerning species sensitivity, and environmental relevance of the results will be needed.
Environmental Pollution | 2011
Michael A. Lewis; Rachel Pryor; Lynn Wilking
The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria.
Marine Pollution Bulletin | 2003
Katherine R Edwards; Joe Eugene Lepo; Michael A. Lewis
The relative environmental toxicities of synthetic and biogenic surfactants used in oil spill remediation efforts are not well understood. Acute and chronic toxicities of three synthetic surfactants and three microbiologically produced surfactants were determined and compared in this study for the estuarine epibenthic invertebrate, Mysidopsis bahia and the inland silverside, Menidia beryllina. The toxicities of the surfactant were determined in standard laboratory static and static-renewal tests of 4-7 d duration. Results were specific to the surfactant, response parameter and test species. The LC50 values (nominal concentrations) for M. bahia ranged from 3.3 mg/l (Triton X-100) to >1000 mg/l (PES-61) and 2.5 mg/l (Triton X-100) to 413.6 mg/l (PES-61) for M. beryllina. Chronic first-effect concentrations (mg/l) for the six surfactants ranged from 2.3 to 465.0 (M. beryllina) and 1.0 to >1000.0 (M. bahia) based on reductions in growth and fecundity. Few generalizations could be made concerning the results due to their variability but M. bahia was generally the more sensitive species and the toxicities of the biosurfactants were intermediate to those of the synthetic surfactants.
Toxicology and Industrial Health | 1999
Michael H. Fulton; David W. Moore; Edward Frank Wirth; G. Thomas Chandler; Peter B. Key; James W. Daugomah; Erich D. Strozier; John Devane; James R. Clark; Michael A. Lewis; Dana B. Finley; Walter Ellenberg; Karl J. Karnaky; Geoffrey I. Scott
Agricultural nonpoint source (NPS) runoff may result in significant discharges of pesticides, suspended sediments, and fertilizers into estuarine habitats adjacent to agricultural areas or downstream from agricultural watersheds. Exposure of estuarine fin fish and shellfish to toxic levels of pesticides may occur, resulting in significant declines in field populations. Integrated pest management (IPM), best management practices (BMP), and retention ponds (RP) are risk management tools that have been proposed to reduce the contaminant risk from agricultural NPS runoff into estuarine ecosystems. Field studies were conducted at three sites within coastal estuarine ecosystems of South Carolina (SC) from 1985 to 1990 that varied in terms of the amount and degree of risk reduction strategies employed. An intensively managed (IPM, BMP, and RP) agricultural treatment site (TRT) was studied for pesticide runoff impacts. From 1985 to 1987, there were minimal (some IPM and BMP) management activities at TRT, but from 1988 to 1990, TRT was managed using an intensive risk reduction strategy. A second unmanaged agricultural growing area, Kiawah (KWA), was also studied and compared with TRT in terms of pesticide runoff and the resulting impacts on grass shrimp (Palaemonetes pugio) and mummichogs (Fundulus heteroclitus). A third, non-agricultural, reference site (CTL) was used for comparing results from the managed and unmanaged agricultural sites. In situ toxicity tests and field samples of the grass shrimp populations were conducted at each site and compared in terms of survival and the effectiveness of current risk reduction strategies. Significant runoff of insecticides (azinphosmethyl, endosulfan, and fenvalerate) along with several fish kills were observed at TRT prior to the implementation of rigorous risk reduction methods. A significant reduction of in stream pesticide concentrations (up to 90%) was observed at TRT following the implementation of strict NPS runoff controls, which greatly reduced impacts on estuarine fish and shellfish. At the unmanaged KWA, continued impacts due to the runoff of these insecticides were observed, along with several fish kills. Additional monitoring indicated that gravid female grass shrimp populations from KWA had elevated levels of P-glycoprotein (P-gp), a multidrug resistance protein, which may transport various pesticides across cellular membranes. Comparison of field results with laboratory toxicity tests established that pesticide exposure was the primary cause of observed field impacts at each site. These findings clearly indicate the value of an integrated risk reduction strategy (BMP, IPM, and RP) for minimizing impacts from NPS agricultural pesticide runoff.
Environmental Pollution | 2001
Michael A. Lewis; David E. Weber; Roman S. Stanley; James C. Moore
Environmental effects of dredging events have been uncommonly reported for shallow, residential estuaries characteristic of the Gulf of Mexico region. The objective of this study was to determine the impact of hydraulic dredging on an urbanized estuary. Physicochemical quality, benthic community composition, whole sediment toxicity, periphytic algal community composition and trace metal tissue quality were determined prior to and after dredging. The effects on surface water pH, dissolved oxygen, and temperature were negligible but photosynthetically active radiation was decreased at several stations. Dredging significantly reduced benthic diversity and density (P < 0.05). However, the sediments were not acutely toxic to the epibenthic, Americamysis bahia (formerly Mysidopsis bahia); survival averaged 93% (post-dredging) and to 98% (pre-dredging). There were several post-dredging taxonomic structural changes in the diatom-dominated, periphyton community but differences in mean density and three diversity indices were not significant. Trace metal concentration in periphyton after dredging were reduced from an average of 4-65% and significantly for mercury, zinc and chromium in several areas. It was concluded that the environmental impact of small-scale dredging events in urbanized near-coastal areas, based on the selected parameters, are likely to be localized and of short-term environmental consequence. The choice of the target biota, response parameters and chemical analysis are important considerations in the environmental impact assessment of these periodic episodic events.
Science of The Total Environment | 2002
Michael A. Lewis; Geoff Scott; Dan Bearden; Robert L. Quarles; James C. Moore; Erich D. Strozier; Scott K Sivertsen; Aaron R Dias; Marion Sanders
The objective of this study was to determine inorganic and organic contaminant concentrations in edible tissue of fish collected from eight coastal areas receiving wastewater discharges and from two reference locations. Trace metal residues were statistically similar regardless of the collection site. Zinc (100% detection in all samples), total mercury (100%), total arsenic (92%), copper (92%), and selenium (88%) were the more commonly detected trace metals. Mercury concentrations exceeded the Florida health-based standard of 0.5 microg/g for limited fish consumption in 30% of the total samples and averaged 0.40 (+/- 1 S.D. = 0.22, range < or = 0.08 to 0.85) microg/g wet weight. The average total PAH concentrations were 1.79 (+/- 1.60) ng/g (reference areas) and 2.17 (+/- 3.29) ng/g (wastewater-impacted areas). Pyrene was detected most frequently (63% of the total samples) and averaged 0.74 (+/- 0.35) ng/g wet wt. The average total PCB concentrations were 4.8 (+/- 7.1) ng/g (reference areas) and 31.6 (+/- 31.3) ng/g (wastewater-impacted areas) Concentrations of dieldrin and cis-chlordane were approximately eight times greater, respectively, in fish collected from wastewater receiving waters, whereas total DDT and total pesticide concentrations were not elevated in the same areas. Concentrations of total PCBs and all chlorinated pesticides were below US health-based standards. The lack of a published reference data base for fish tissue quality in near-coastal areas of the Gulf of Mexico restricts an assessment of the environmental significance of results from this and similar studies investigating the fate of point source contaminants.
Environmental Toxicology and Chemistry | 2009
Michael A. Lewis; Richard Devereux
Impacts of human-related chemicals, either alone or in combination with other stressors, are important to understand to prevent and reverse continuing worldwide seagrass declines. This review summarizes reported concentrations of anthropogenic chemicals in grass bed-associated surface waters, sediments, and plant tissues and phytotoxic concentrations. Fate information in seagrass-rooted sediments and overlying water is most available for trace metals. Toxicity results in aqueous exposures are available for at least 13 species and a variety of trace metals, pesticides, and petrochemicals. In contrast, results for chemical mixtures and chemicals in sediment matrices are uncommon. Contaminant bioaccumulation information is available for at least 23 species. The effects of plant age, tissue type, and time of collection have been commonly reported but not biological significance of the chemical residues. Experimental conditions have varied considerably in seagrass contaminant research and interspecific differences in chemical residues and chemical tolerances are common, which limits generalizations and extrapolations among species and chemicals. The few reported risk assessments have been usually local and limited to a few single chemicals and species representative of the south Australian and Mediterranean floras. Media-specific information describing exposure concentrations, toxic effect levels, and critical body burdens of common near-shore contaminants is needed for most species to support integrated risk assessments at multiple geographical scales and to evaluate the ability of numerical effects-based criteria to protect these marine angiosperms at risk.
Environmental Pollution | 2013
Michael A. Lewis; Rachel Pryor
Phytotoxicity results are reviewed for oils, dispersants and dispersed oils. The phytotoxicity database consists largely of results from a patchwork of reactive research conducted after oil spills to marine waters. Toxicity information is available for at least 41 crude oils and 56 dispersants. As many as 107 response parameters have been monitored for 85 species of unicellular and multicellular algae, 28 wetland plants, 13 mangroves and 9 seagrasses. Effect concentrations have varied by as much as six orders of magnitude due to experimental diversity. This diversity restricts phytotoxicity predictions and identification of sensitive species, life stages and response parameters. As a result, evidence-based risk assessments for most aquatic plants and petrochemicals and dispersants are not supported by the current toxicity database. A proactive and experimentally-consistent approach is recommended to provide threshold toxic effect concentrations for sensitive life stages of aquatic plants inhabiting diverse ecosystems.
Water Air and Soil Pollution | 2001
Michael A. Lewis; James C. Moore; Larry R. Goodman; James M. Patrick; Roman S. Stanley; Thomas H. Roush; Robert L. Quarles
Water and sediment quality in threetidal bayous located near Pensacola, Florida, wereassessed during 1993–1995. The primary objective wasto determine the environmental condition of therelatively small urban bayous by comparing thechemical quality of the sediments and surface waterwith published guidelines and criteria developed toprotect marine life. Surface water concentrations ofmost potential toxicants such as heavy metals,organochloride pesticides, PAHs and PCBs were usuallybelow method detection limits. The major exception tothis trend was for copper which consistently exceededFlorida and National acute and chronic water qualitycriteria. Nickel, cadmium and chromium intermittentlyexceeded these criteria. Sediment contamination wassite-specific and chemically diverse. Theconcentrations of as many as 17 compounds exceededproposed Florida sediment quality assessmentguidelines indicating the potential for adversebiological effects. Nutrient concentrations, with oneexception, were below average levels found in otherFlorida estuaries. Seasonal variation in contaminantconcentrations for sediment collected from the samesampling station was less than an order of magnitude. The differences in the concentrations of the sameanalytes as measured for the multiple samplingstations located within the same bayou varied 1 to 2orders of magnitude and over 2 orders of magnitude forthe 20 sampling stations located in the three bayous. A within-bayou sediment contaminant gradient wasevident; sediment quality generally improved seaward.