Michael Andäng
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Andäng.
Nature | 2008
Michael Andäng; Jens Hjerling-Leffler; Annalena Moliner; T. Kalle Lundgren; Gonçalo Castelo-Branco; Ester Pozas; Vitezslav Bryja; Sophie Halliez; Hiroshi Nishimaru; Johannes Wilbertz; Ernest Arenas; Martin Koltzenburg; Patrick Charnay; Abdeljabbar El Manira; Carlos F. Ibáñez; Patrik Ernfors
Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the ‘DNA damage’ S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine γ-aminobutyric acid (GABA) signalling by means of GABAA receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABAA receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABAA receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ruani N. Fernando; Boris Eleuteri; Shaimaa Abdelhady; André Nussenzweig; Michael Andäng; Patrik Ernfors
Adult neural stem cell proliferation is dynamic and has the potential for massive self-renewal yet undergoes limited cell division in vivo. Here, we report an epigenetic mechanism regulating proliferation and self-renewal. The recruitment of the PI3K-related kinase signaling pathway and histone H2AX phosphorylation following GABAA receptor activation limits subventricular zone proliferation. As a result, NSC self-renewal and niche size is dynamic and can be directly modulated in both directions pharmacologically or by genetically targeting H2AX activation. Surprisingly, changes in proliferation have long-lasting consequences on stem cell numbers, niche size, and neuronal output. These results establish a mechanism that continuously limits proliferation and demonstrates its impact on adult neurogenesis. Such homeostatic suppression of NSC proliferation may contribute to the limited self-repair capacity of the damaged brain.
Cell | 2014
Satish Srinivas Kitambi; Enrique M. Toledo; Dmitry Usoskin; Shimei Wee; Aditya Harisankar; Richard Svensson; Kristmundur Sigmundsson; Christina Kalderén; Mia Niklasson; Soumi Kundu; Sergi Aranda; Bengt Westermark; Lene Uhrbom; Michael Andäng; Peter Damberg; Sven Nelander; Ernest Arenas; Per Artursson; Julian Walfridsson; Karin Nilsson; Lars Hammarström; Patrik Ernfors
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.
Brain Research | 2005
Zhengqing Hu; Michael Andäng; Daofeng Ni; Mats Ulfendahl
Mouse embryonic stem (ES) cells were transplanted into the cochlea of adult guinea pigs in order to explore their survival, differentiation, and possible integration with the host tissue. With the purpose of investigating the possible effect of manipulating the local embryonic microenvironment, ES cells were transplanted into the cochlea with or without an embryonic neuronal cograft consisting of dorsal root ganglion (DRG) tissue. To detect the survival and differentiation of ES cells, cells expressing green fluorescent protein (GFP) were used in combination with immunohistochemical detection of a neuronal marker, neural class III beta-tubulin (TUJ1 antibody). At 4 weeks following transplantation implanted ES cells were found close both to the sensory epithelium, and the spiral ganglion neurons (SGNs) with their peripheral dendritic processes projecting to the organ of Corti. There was a significant difference in the number of surviving TUJ1 (+) ES cells between the DRG cograft group and the non-cograft group (P < 0.01, ANOVA). Neurite-like projections were also identified between TUJ1-positive ES cells and the peripheral dendritic processes from SGNs. The results suggest that an embryonic neuronal microenvironment may be one of the key factors in the survival and differentiation of ES cells in the adult auditory system.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Seth Malmersjö; Paola Rebellato; Erik Smedler; Henrike Planert; Shigeaki Kanatani; Isabel Liste; Hampus Sunner; Shaimaa Abdelhady; Songbai Zhang; Michael Andäng; Abdeljabbar El Manira; Gilad Silberberg; Ernest Arenas; Per Uhlén
Significance Synchronized activity among groups of interconnected cells is essential for diverse functions in the brain. Most studies on neuronal networks have been performed in the mature brain when chemical synapses have been established. However, less is known about networking during embryonic development. We have studied neural progenitors and found that they form gap junction-mediated small-world networks, which, via electrical depolarization, drive spontaneous calcium activity to stimulate cell proliferation. Our data underscore the critical role of intricate cell signaling during embryonic development and show that complex networks of immature cells exist in the brain before birth. Coherent network activity among assemblies of interconnected cells is essential for diverse functions in the adult brain. However, cellular networks before formations of chemical synapses are poorly understood. Here, embryonic stem cell-derived neural progenitors were found to form networks exhibiting synchronous calcium ion (Ca2+) activity that stimulated cell proliferation. Immature neural cells established circuits that propagated electrical signals between neighboring cells, thereby activating voltage-gated Ca2+ channels that triggered Ca2+ oscillations. These network circuits were dependent on gap junctions, because blocking prevented electrotonic transmission both in vitro and in vivo. Inhibiting connexin 43 gap junctions abolished network activity, suppressed proliferation, and affected embryonic cortical layer formation. Cross-correlation analysis revealed highly correlated Ca2+ activities in small-world networks that followed a scale-free topology. Graph theory predicts that such network designs are effective for biological systems. Taken together, these results demonstrate that immature cells in the developing brain organize in small-world networks that critically regulate neural progenitor proliferation.
Journal of Neurochemistry | 2004
Tibor Harkany; Michael Andäng; Hylke Jan Kingma; Tamás J. Görcs; Carl Holmgren; Yuri Zilberter; Patrik Ernfors
Embryonic stem (ES) cells are multipotent progenitors with unlimited developmental potential, and in vitro differentiated ES cell‐derived neuronal progenitors can develop into functional neurons when transplanted in the central nervous system. As the capacity of naive primary ES cells to integrate in the adult brain and the role of host neural tissue therein are yet largely unknown, we grafted low densities of undifferentiated mouse ES (mES) cells in adult mouse brain regions associated with neurodegenerative disorders; and we demonstrate that ES cell‐derived neurons undergo gradual integration in recipient tissue and acquire morphological and electrophysiological properties indistinguishable from those of host neurons. Only some brain areas permitted survival of mES‐derived neural progenitors and formed instructive environments for neuronal differentiation and functional integration of naive mES cells. Hence, region‐specific presence of microenvironmental cues and their pivotal involvement in controlling ES cell integration in adult brain stress the importance of recipient tissue characteristics in formulating cell replacement strategies for neurodegenerative disorders.
Stem Cells and Development | 2008
Annalena Moliner; Patrik Ernfors; Carlos F. Ibáñez; Michael Andäng
Mouse embryonic stem (ES) cells grown in feeder-free suspension cultures in the presence of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) form spheres that retain pluripotency after multiple passages. ES cell-derived spheres of any passage acquired increased competence to differentiate into neurons over time in culture. Eight-day-old spheres produced many neurons upon plating in differentiation conditions whereas 3-day-old spheres produce none, even after monolayer expansion or treatment with blockers of inhibitory signals, indicating the acquisition of a reversible, proto-neurogenic state during sphere development. Gene expression profiling with oligonucleotide microarrays was used to identify the transcriptional changes accompanying this process. Sphere growth was characterized by down-regulation of a subset of ES cell-expressed genes during the first few days of sphere formation, and progressive up-regulation of novel genes over the course of 1 week in culture. Differential gene expression between 3-day-old and 8 day-old spheres was verified by quantitative real-time PCR experiments. Gene Set Enrichment Analysis (GSEA) of microarray data indicated that neurogenic potential in the late stages of sphere development correlated predominantly with up-regulation of pathways related to mitochondrial function, cell metabolism, oxidative stress, hypoxia, and down-regulation of RNA transcription and proteasome machineries, as well as pathways induced by myc and repressed by retinoic acid. We propose that differences in cellular metabolic state brought about by cell-cell contact and paracrine interactions in the sphere niche may play crucial roles in biasing the early stages of ES cell differentiation toward a neuronal phenotype.
BMC Physiology | 2012
Satish Srinivas Kitambi; Erik Nilsson; Petra Sekyrova; Cristián Ibarra; Gilbert Nyah Tekeoh; Michael Andäng; Patrik Ernfors; Per Uhlén
BackgroundCardiovascular toxicity is a major limiting factor in drug development and requires multiple cost-effective models to perform toxicological evaluation. Zebrafish is an excellent model for many developmental, toxicological and regenerative studies. Using approaches like morpholino knockdown and electrocardiogram, researchers have demonstrated physiological and functional similarities between zebrafish heart and human heart. The close resemblance of the genetic cascade governing heart development in zebrafish to that of humans has propelled the zebrafish system as a cost-effective model to conduct various genetic and pharmacological screens on developing embryos and larvae. The current report describes a methodology for rapid isolation of adult zebrafish heart, maintenance ex vivo, and a setup to perform quick small molecule throughput screening, including an in-house implemented analysis script.ResultsAdult zebrafish were anesthetized and after rapid decapitation the hearts were isolated. The short time required for isolation of hearts allows dissection of multiple fishes, thereby obtaining a large sample size. The simple protocol for ex vivo culture allowed maintaining the beating heart for several days. The in-house developed script and spectral analyses allowed the readouts to be presented either in time domain or in frequency domain. Taken together, the current report offers an efficient platform for performing cardiac drug testing and pharmacological screens.ConclusionThe new methodology presents a fast, cost-effective, sensitive and reliable method for performing small molecule screening. The variety of readouts that can be obtained along with the in-house developed analyses script offers a powerful setup for performing cardiac toxicity evaluation by researchers from both academics and industry.
Nature Protocols | 2008
Michael Andäng; Annalena Moliner; Claudia A. Doege; Carlos F. Ibáñez; Patrik Ernfors
Mouse and human embryonic stem (mES and hES) cells have become one of the most intensively studied primary cell types in biomedical research. However, culturing ES cells is notoriously labor intensive. We have optimized current ES cell culture methods by growing mES cells in suspension in a defined medium. This protocol is unsurpassed in time efficiency and typically requires only 20 min of effective hands-on time per week. This protocol maintains a very high degree of pluripotent cells partly by mechanical separation of spontaneously differentiating cells. mES cells can be cultured for extended periods (>6 months) without the loss of pluripotency markers. High passage (>20) adherent mES cultures containing contaminating differentiated cells can be rescued and enriched in undifferentiated ES cells.
British Journal of Cancer | 2012
Hiromi Hiyoshi; Shaimaa Abdelhady; L. Segerström; B. Sveinbjörnsson; Mutsuo Nuriya; T. K. Lundgren; L. Desfrere; Ayako Miyakawa; Masato Yasui; Per Kogner; J. I. Johnsen; Michael Andäng; Per Uhlén
Background:Cellular quiescence is a state of reversible proliferation arrest that is induced by anti-mitogenic signals. The endogenous cardiac glycoside ouabain is a specific ligand of the ubiquitous sodium pump, Na,K-ATPase, also known to regulate cell growth through unknown signalling pathways.Methods:To investigate the role of ouabain/Na,K-ATPase in uncontrolled neuroblastoma growth we used xenografts, flow cytometry, immunostaining, comet assay, real-time PCR, and electrophysiology after various treatment strategies.Results:The ouabain/Na,K-ATPase complex induced quiescence in malignant neuroblastoma. Tumour growth was reduced by >50% when neuroblastoma cells were xenografted into immune-deficient mice that were fed with ouabain. Ouabain-induced S-G2 phase arrest, activated the DNA-damage response (DDR) pathway marker γH2AX, increased the cell cycle regulator p21Waf1/Cip1 and upregulated the quiescence-specific transcription factor hairy and enhancer of split1 (HES1), causing neuroblastoma cells to ultimately enter G0. Cells re-entered the cell cycle and resumed proliferation, without showing DNA damage, when ouabain was removed.Conclusion:These findings demonstrate a novel action of ouabain/Na,K-ATPase as a regulator of quiescence in neuroblastoma, suggesting that ouabain can be used in chemotherapies to suppress tumour growth and/or arrest cells to increase the therapeutic index in combination therapies.