Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael F. T. Koehler is active.

Publication


Featured researches published by Michael F. T. Koehler.


Bioorganic & Medicinal Chemistry Letters | 2009

GDC―0449―A potent inhibitor of the hedgehog pathway

Kirk Robarge; Shirley A. Brunton; Georgette Castanedo; Yong Cui; Michael S. Dina; Richard Goldsmith; Stephen E. Gould; Oivin Guichert; Janet Gunzner; Jason S. Halladay; Wei Jia; Cyrus Khojasteh; Michael F. T. Koehler; Karen Kotkow; Hank La; Rebecca L. LaLonde; Kevin Lau; Leslie Lee; Derek Marshall; James C. Marsters; Lesley J. Murray; Changgeng Qian; Lee L. Rubin; Laurent Salphati; Mark S. Stanley; John H.A. Stibbard; Daniel P. Sutherlin; Savita Ubhayaker; Shumei Wang; Susan Wong

SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.


Journal of Biological Chemistry | 2003

Origins of PDZ domain ligand specificity. Structure determination and mutagenesis of the Erbin PDZ domain.

Nicholas J. Skelton; Michael F. T. Koehler; Kerry Zobel; Wai Lee Wong; Sherry Yeh; M. Theresa Pisabarro; Jian Ping Yin; Laurence A. Lasky; Sachdev S. Sidhu

The LAP (leucine-rich repeatand PDZ-containing) family of proteins play a role in maintaining epithelial and neuronal cell size, and mutation of these proteins can have oncogenic consequences. The LAP protein Erbin has been implicated previously in a number of cellular activities by virtue of its PDZ domain-dependent association with the C termini of both ERB-B2 and the p120-catenins. The present work describes the NMR structure of Erbin PDZ in complex with a high affinity peptide ligand and includes a comprehensive energetic analysis of both the ligand and PDZ domain side chains responsible for binding. C-terminal phage display has been used to identify preferred ligands, whereas binding affinity measurements provide precise details of the energetic importance of each ligand side chain to binding. Alanine and homolog scanning mutagenesis (in a combinatorial phage display format) identifies Erbin side chains that make energetically important contacts with the ligand. The structure of a phage-optimized peptide (Ac-TGW−4ETW−1V; IC50 = ∼0.15 μm) in complex with Erbin PDZ provides a structural context to understand the binding energetics. In particular, the very favorable interactions with Trp−1 are not Erbin side chain-mediated (and therefore may be generally applicable to many PDZ domains), whereas the β2-β3 loop provides a binding site for the Trp−4 side chain (specific to Erbin because it has an unusually long loop). These results contribute to a growing appreciation for the importance of at least five ligand C-terminal side chains in determining PDZ domain binding energy and highlight the mechanisms of ligand discrimination among the several hundred PDZ domains present in the human genome.


ACS Medicinal Chemistry Letters | 2014

Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity

Zhi-Fu Tao; Lisa A. Hasvold; Le Wang; Xilu Wang; Andrew M. Petros; Chang H. Park; Erwin R. Boghaert; Nathaniel D. Catron; Jun Chen; Peter M. Colman; Peter E. Czabotar; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Sarah G. Hymowitz; Sha Jin; Russell A. Judge; Michael F. T. Koehler; Peter Kovar; Guillaume Lessene; Michael J. Mitten; Chudi Ndubaku; Paul Nimmer; Hans E. Purkey; Anatol Oleksijew; Darren C. Phillips; Brad E. Sleebs; Brian J. Smith; Morey L. Smith; Stephen K. Tahir

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.


ACS Chemical Biology | 2009

Antagonism of c-IAP and XIAP proteins is required for efficient induction of cell death by small-molecule IAP antagonists.

Chudi Ndubaku; Eugene Varfolomeev; Lan Wang; Kerry Zobel; Kevin Lau; Linda O. Elliott; Brigitte Maurer; Anna V. Fedorova; Jasmin N. Dynek; Michael F. T. Koehler; Sarah G. Hymowitz; Vickie Tsui; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Domagoj Vucic

The inhibitor of apoptosis (IAP) proteins are critical regulators of cancer cell survival, which makes them attractive targets for therapeutic intervention in cancers. Herein, we describe the structure-based design of IAP antagonists with high affinities and selectivity (>2000-fold) for c-IAP1 over XIAP and their functional characterization as activators of apoptosis in tumor cells. Although capable of inducing cell death and preventing clonogenic survival, c-IAP-selective antagonists are significantly less potent in promoting apoptosis when compared to pan-selective compounds. However, both pan-IAP- and c-IAP-selective antagonists stimulate c-IAP1 and c-IAP2 degradation and activation of NF-kappaB pathways with comparable potencies. Therefore, although compounds that specifically target c-IAP1 and c-IAP2 are capable of inducing apoptosis, antagonism of the c-IAP proteins and XIAP is required for efficient induction of cancer cell death by IAP antagonists.


Journal of Medicinal Chemistry | 2011

Quinazoline Sulfonamides as Dual Binders of the Proteins B-Cell Lymphoma 2 and B-Cell Lymphoma Extra Long with Potent Proapoptotic Cell-Based Activity

Brad E. Sleebs; Peter E. Czabotar; Wayne J. Fairbrother; W. Douglas Fairlie; John A. Flygare; David C. S. Huang; Wilhelmus J A Kersten; Michael F. T. Koehler; Guillaume Lessene; Kym N. Lowes; John P. Parisot; Brian J. Smith; Morey L. Smith; Andrew J. Souers; Ian P. Street; Hong Yang; Jonathan B. Baell

ABT-737 and ABT-263 are potent inhibitors of the BH3 antiapoptotic proteins, Bcl-x(L) and Bcl-2. This class of putative anticancer agents invariantly contains an acylsulfonamide core. We have designed and synthesized a series of novel quinazoline-based inhibitors of Bcl-2 and Bcl-x(L) that contain a heterocyclic alternative to the acylsulfonamide. These compounds exhibit submicromolar, mechanism-based activity in human small-cell lung carcinoma cell lines in the presence of 10% human serum. This comprises the first successful demonstration of a quinazoline sulfonamide core serving as an effective benzoylsulfonamide bioisostere. Additionally, these novel quinazolines comprise only the second known class of Bcl-2 family protein inhibitors to induce mechanism-based cell death.


Journal of Medicinal Chemistry | 2012

Discovery and Optimization of C-2 Methyl Imidazopyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2.

Mark Zak; Rohan Mendonca; Mercedesz Balazs; Kathy Barrett; Philippe Bergeron; Wade S. Blair; Christine Chang; Gauri Deshmukh; Jason DeVoss; Peter S. Dragovich; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Stefan Gradl; Chris Hamman; Emily Hanan; Eric Harstad; Peter R. Hewitt; Christopher Hurley; T Jin; Amber E. Johnson; Tony Johnson; Jane R. Kenny; Michael F. T. Koehler; P Bir Kohli; Janusz Jozef Kulagowski; Sharada Labadie; J Liao; Marya Liimatta; Zeming Lin

Herein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated. Efforts to improve the in vitro and in vivo ADME properties of 4 while maintaining JAK1 selectivity are described, culminating in the discovery of a highly optimized and balanced inhibitor (20). Details of the biological characterization of 20 are disclosed including JAK1 vs JAK2 selectivity levels, preclinical in vivo PK profiles, performance in an in vivo JAK1-mediated PK/PD model, and attributes of an X-ray structure in complex with JAK1.


Journal of Medicinal Chemistry | 2013

Identification of C-2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2.

Mark Zak; Christopher Hurley; Stuart Ward; Philippe Bergeron; Kathy Barrett; Mercedesz Balazs; Wade S. Blair; Richard James Bull; Paroma Chakravarty; Christine Chang; Peter Crackett; Gauri Deshmukh; Jason DeVoss; Peter S. Dragovich; Charles Eigenbrot; Charles Ellwood; Simon Gaines; Nico Ghilardi; Paul Gibbons; Stefan Gradl; Peter Gribling; Chris Hamman; Eric Harstad; Peter R. Hewitt; Adam R. Johnson; Tony Johnson; Jane R. Kenny; Michael F. T. Koehler; Pawan Bir Kohli; Sharada Shenvi Labadie

Herein we report on the structure-based discovery of a C-2 hydroxyethyl moiety which provided consistently high levels of selectivity for JAK1 over JAK2 to the imidazopyrrolopyridine series of JAK1 inhibitors. X-ray structures of a C-2 hydroxyethyl analogue in complex with both JAK1 and JAK2 revealed differential ligand/protein interactions between the two isoforms and offered an explanation for the observed selectivity. Analysis of historical data from related molecules was used to develop a set of physicochemical compound design parameters to impart desirable properties such as acceptable membrane permeability, potent whole blood activity, and a high degree of metabolic stability. This work culminated in the identification of a highly JAK1 selective compound (31) exhibiting favorable oral bioavailability across a range of preclinical species and robust efficacy in a rat CIA model.


Bioorganic & Medicinal Chemistry Letters | 2003

Phosphate ester serum albumin affinity tags greatly improve peptide half-life in vivo.

Kerry Zobel; Michael F. T. Koehler; Maureen Beresini; Lisa D. Caris; Daniel Combs

A series of phosphate ester based small molecules designed to bind tightly to serum albumin were applied to the amino terminus of an anticoagulant peptide in an effort to increase its protein binding in vivo. The tagged peptides exhibited high affinity for both rabbit and human serum albumin when passed through liquid chromatographic columns with serum albumins incorporated into the stationary phase. The peptides were then administered intravenously to rabbits and found to have a greater than 50-fold increase in plasma half life. The highest affinity peptides showed a reduction in bioactivity consistent with their sequestration away from their protein target in the presence of 0.1% rabbit serum albumin.


ACS Medicinal Chemistry Letters | 2016

Development of a Potent, Specific CDK8 Kinase Inhibitor Which Phenocopies CDK8/19 Knockout Cells.

Michael F. T. Koehler; Philippe Bergeron; Elizabeth Blackwood; Krista K. Bowman; Kevin R. Clark; Ron Firestein; James R. Kiefer; Klaus Maskos; Mark L. McCleland; Linda Orren; Laurent Salphati; Steve Schmidt; Elisabeth V. Schneider; Jiansheng Wu; Maureen Beresini

Beginning with promiscuous COT inhibitors, which were found to inhibit CDK8, a series of 6-aza-benzothiophene containing compounds were developed into potent, selective CDK8 inhibitors. When cocrystallized with CDK8 and cyclin C, these compounds exhibit an unusual binding mode, making a single hydrogen bond to the hinge residue A100, a second to K252, and a key cation-π interaction with R356. Structure-based drug design resulted in tool compounds 13 and 32, which are highly potent, kinase selective, permeable compounds with a free fraction >2% and no measurable efflux. Despite these attractive properties, these compounds exhibit weak antiproliferative activity in the HCT-116 colon cancer cell line. Further examination of the activity of 32 in this cell line revealed that the compound reduced phosphorylation of the known CDK8 substrate STAT1 in a manner identical to a CDK8 knockout clone, illustrating the complex effects of inhibition of CDK8 kinase activity in proliferation in these cells.


Journal of Medicinal Chemistry | 2013

Pyrimidoaminotropanes as Potent, Selective, and Efficacious Small Molecule Kinase Inhibitors of the Mammalian Target of Rapamycin (mTOR)

Anthony A. Estrada; Daniel Shore; Elizabeth Blackwood; Yung-Hsiang Chen; Gauri Deshmukh; Xiao Ding; Antonio G. DiPasquale; Jennifer Epler; Lori Friedman; Michael F. T. Koehler; Lichuan Liu; Shiva Malek; Jim Nonomiya; Daniel F. Ortwine; Zhonghua Pei; Steve Sideris; Frederic St-Jean; Lan Trinh; Tom Truong; Joseph P. Lyssikatos

We have recently reported a series of tetrahydroquinazoline (THQ) mTOR inhibitors that produced a clinical candidate 1 (GDC-0349). Through insightful design, we hoped to discover and synthesize a new series of small molecule inhibitors that could attenuate CYP3A4 time-dependent inhibition commonly observed with the THQ scaffold, maintain or improve aqueous solubility and oral absorption, reduce free drug clearance, and selectively increase mTOR potency. Through key in vitro and in vivo studies, we demonstrate that a pyrimidoaminotropane based core was able to address each of these goals. This effort culminated in the discovery of 20 (GNE-555), a highly potent, selective, metabolically stable, and efficacious mTOR inhibitor.

Collaboration


Dive into the Michael F. T. Koehler's collaboration.

Researchain Logo
Decentralizing Knowledge