Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Bergeron is active.

Publication


Featured researches published by Philippe Bergeron.


Journal of Medicinal Chemistry | 2012

Discovery and Optimization of C-2 Methyl Imidazopyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2.

Mark Zak; Rohan Mendonca; Mercedesz Balazs; Kathy Barrett; Philippe Bergeron; Wade S. Blair; Christine Chang; Gauri Deshmukh; Jason DeVoss; Peter S. Dragovich; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Stefan Gradl; Chris Hamman; Emily Hanan; Eric Harstad; Peter R. Hewitt; Christopher Hurley; T Jin; Amber E. Johnson; Tony Johnson; Jane R. Kenny; Michael F. T. Koehler; P Bir Kohli; Janusz Jozef Kulagowski; Sharada Labadie; J Liao; Marya Liimatta; Zeming Lin

Herein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated. Efforts to improve the in vitro and in vivo ADME properties of 4 while maintaining JAK1 selectivity are described, culminating in the discovery of a highly optimized and balanced inhibitor (20). Details of the biological characterization of 20 are disclosed including JAK1 vs JAK2 selectivity levels, preclinical in vivo PK profiles, performance in an in vivo JAK1-mediated PK/PD model, and attributes of an X-ray structure in complex with JAK1.


Journal of Medicinal Chemistry | 2013

Identification of C-2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2.

Mark Zak; Christopher Hurley; Stuart Ward; Philippe Bergeron; Kathy Barrett; Mercedesz Balazs; Wade S. Blair; Richard James Bull; Paroma Chakravarty; Christine Chang; Peter Crackett; Gauri Deshmukh; Jason DeVoss; Peter S. Dragovich; Charles Eigenbrot; Charles Ellwood; Simon Gaines; Nico Ghilardi; Paul Gibbons; Stefan Gradl; Peter Gribling; Chris Hamman; Eric Harstad; Peter R. Hewitt; Adam R. Johnson; Tony Johnson; Jane R. Kenny; Michael F. T. Koehler; Pawan Bir Kohli; Sharada Shenvi Labadie

Herein we report on the structure-based discovery of a C-2 hydroxyethyl moiety which provided consistently high levels of selectivity for JAK1 over JAK2 to the imidazopyrrolopyridine series of JAK1 inhibitors. X-ray structures of a C-2 hydroxyethyl analogue in complex with both JAK1 and JAK2 revealed differential ligand/protein interactions between the two isoforms and offered an explanation for the observed selectivity. Analysis of historical data from related molecules was used to develop a set of physicochemical compound design parameters to impart desirable properties such as acceptable membrane permeability, potent whole blood activity, and a high degree of metabolic stability. This work culminated in the identification of a highly JAK1 selective compound (31) exhibiting favorable oral bioavailability across a range of preclinical species and robust efficacy in a rat CIA model.


ACS Medicinal Chemistry Letters | 2016

Development of a Potent, Specific CDK8 Kinase Inhibitor Which Phenocopies CDK8/19 Knockout Cells.

Michael F. T. Koehler; Philippe Bergeron; Elizabeth Blackwood; Krista K. Bowman; Kevin R. Clark; Ron Firestein; James R. Kiefer; Klaus Maskos; Mark L. McCleland; Linda Orren; Laurent Salphati; Steve Schmidt; Elisabeth V. Schneider; Jiansheng Wu; Maureen Beresini

Beginning with promiscuous COT inhibitors, which were found to inhibit CDK8, a series of 6-aza-benzothiophene containing compounds were developed into potent, selective CDK8 inhibitors. When cocrystallized with CDK8 and cyclin C, these compounds exhibit an unusual binding mode, making a single hydrogen bond to the hinge residue A100, a second to K252, and a key cation-π interaction with R356. Structure-based drug design resulted in tool compounds 13 and 32, which are highly potent, kinase selective, permeable compounds with a free fraction >2% and no measurable efflux. Despite these attractive properties, these compounds exhibit weak antiproliferative activity in the HCT-116 colon cancer cell line. Further examination of the activity of 32 in this cell line revealed that the compound reduced phosphorylation of the known CDK8 substrate STAT1 in a manner identical to a CDK8 knockout clone, illustrating the complex effects of inhibition of CDK8 kinase activity in proliferation in these cells.


Journal of Medicinal Chemistry | 2012

Potent, Selective, and Orally Bioavailable Inhibitors of the Mammalian Target of Rapamycin Kinase Domain Exhibiting Single Agent Antiproliferative Activity

Michael F. T. Koehler; Philippe Bergeron; Elizabeth Blackwood; Krista K. Bowman; Yung-Hsiang Chen; Gauri Deshmukh; Xiao Ding; Jennifer Epler; Kevin Lau; Leslie Lee; Lichuan Liu; Cuong Ly; Shiva Malek; Jim Nonomiya; Jason Oeh; Daniel F. Ortwine; Deepak Sampath; Steve Sideris; Lan Trinh; Tom Truong; Jiansheng Wu; Zhonghua Pei; Joseph P. Lyssikatos

Selective inhibitors of mammalian target of rapamycin (mTOR) kinase based upon saturated heterocycles fused to a pyrimidine core were designed and synthesized. Each series produced compounds with K(i) < 10 nM for the mTOR kinase and >500-fold selectivity over closely related PI3 kinases. This potency translated into strong pathway inhibition, as measured by phosphorylation of mTOR substrate proteins and antiproliferative activity in cell lines with a constitutively active PI3K pathway. Two compounds exhibiting suitable mouse PK were profiled in in vivo tumor models and were shown to suppress mTORC1 and mTORC2 signaling for over 12 h when dosed orally. Both compounds were additionally shown to suppress tumor growth in vivo in a PC3 prostate cancer model over a 14 day study.


Journal of Medicinal Chemistry | 2011

Potent, selective, and orally bioavailable inhibitors of mammalian target of rapamycin (mTOR) kinase based on a quaternary substituted dihydrofuropyrimidine.

Fred E. Cohen; Philippe Bergeron; Elizabeth Blackwood; Krista K. Bowman; Huifen Chen; Antonio G. DiPasquale; Jennifer Epler; Michael F. T. Koehler; Kevin Lau; Cristina Lewis; Lichuan Liu; Cuong Ly; Shiva Malek; Jim Nonomiya; Daniel F. Ortwine; Zhonghua Pei; Kirk Robarge; Steve Sideris; Lan Trinh; Tom Truong; Jiansheng Wu; Xianrui Zhao; Joseph P. Lyssikatos

A series of inhibitors of mTOR kinase based on a quaternary-substituted dihydrofuropyrimidine was designed and synthesized. The most potent compounds in this series inhibited mTOR kinase with K(i) < 1.0 nM and were highly (>100×) selective for mTOR over the closely related PI3 kinases. Compounds in this series showed inhibition of the pathway and antiproliferative activity in cell-based assays. Furthermore, these compounds had excellent mouse PK, and showed a robust PK-PD relationship in a mouse model of cancer.


ACS Medicinal Chemistry Letters | 2013

Discovery and Biological Profiling of Potent and Selective mTOR Inhibitor GDC-0349.

Zhonghua Pei; Elizabeth Blackwood; Lichuan Liu; Shiva Malek; Marcia Belvin; Michael F. T. Koehler; Daniel F. Ortwine; Huifen Chen; Fred E. Cohen; Jane R. Kenny; Philippe Bergeron; Kevin Lau; Cuong Ly; Xianrui Zhao; Anthony A. Estrada; Tom Truong; Jennifer Epler; Jim Nonomiya; Lan Trinh; Steve Sideris; John D. Lesnick; Linda Bao; Ulka Vijapurkar; Sophie Mukadam; Suzanne Tay; Gauri Deshmukh; Yung-Hsiang Chen; Xiao Ding; Lori Friedman; Joseph P. Lyssikatos

Aberrant activation of the PI3K-Akt-mTOR signaling pathway has been observed in human tumors and tumor cell lines, indicating that these protein kinases may be attractive therapeutic targets for treating cancer. Optimization of advanced lead 1 culminated in the discovery of clinical development candidate 8h, GDC-0349, a potent and selective ATP-competitive inhibitor of mTOR. GDC-0349 demonstrates pathway modulation and dose-dependent efficacy in mouse xenograft cancer models.


Journal of Computer-aided Molecular Design | 2015

An integrated suite of modeling tools that empower scientists in structure- and property-based drug design

Jianwen A. Feng; Ignacio Aliagas; Philippe Bergeron; Jeffrey M. Blaney; Erin K. Bradley; Michael F. T. Koehler; Man-Ling Lee; Daniel F. Ortwine; Vickie Tsui; Johnny Wu; Alberto Gobbi

Structure- and property-based drug design is an integral part of modern drug discovery, enabling the design of compounds aimed at improving potency and selectivity. However, building molecules using desktop modeling tools can easily lead to poor designs that appear to form many favorable interactions with the protein’s active site. Although a proposed molecule looks good on screen and appears to fit into the protein site X-ray crystal structure or pharmacophore model, doing so might require a high-energy small molecule conformation, which would likely be inactive. To help scientists make better design decisions, we have built integrated, easy-to-use, interactive software tools to perform docking experiments, de novo design, shape and pharmacophore based database searches, small molecule conformational analysis and molecular property calculations. Using a combination of these tools helps scientists in assessing the likelihood that a designed molecule will be active and have desirable drug metabolism and pharmacokinetic properties. Small molecule discovery success requires project teams to rapidly design and synthesize potent molecules with good ADME properties. Empowering scientists to evaluate ideas quickly and make better design decisions with easy-to-access and easy-to-understand software on their desktop is now a key part of our discovery process.


Bioorganic & Medicinal Chemistry Letters | 2013

A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors

Wendy Lee; Daniel F. Ortwine; Philippe Bergeron; Kevin Lau; Lichuan Lin; Shiva Malek; Jim Nonomiya; Zhonghua Pei; Kirk Robarge; Stephen Schmidt; Steve Sideris; Joseph P. Lyssikatos

A series of N-7-methyl-imidazolopyrimidine inhibitors of the mTOR kinase have been designed and prepared, based on the hypothesis that the N-7-methyl substituent on imidazolopyrimidine would impart selectivity for mTOR over the related PI3Kα and δ kinases. The corresponding N-Me substituted pyrrolo[3,2-d]pyrimidines and pyrazolo[4,3-d]pyrimidines also show potent mTOR inhibition with selectivity toward both PI3α and δ kinases. The most potent compound synthesized is pyrazolo[4,3-d]pyrimidine 21c. Compound 21c shows a Ki of 2 nM against mTOR inhibition, remarkable selectivity (>2900×) over PI3 kinases, and excellent potency in cell-based assays.


Bioorganic & Medicinal Chemistry Letters | 2012

Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2.

Sharada Labadie; Peter S. Dragovich; Kathy Barrett; Wade S. Blair; Philippe Bergeron; Christine Chang; Gauri Deshmukh; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Christopher Hurley; Adam R. Johnson; Jane R. Kenny; Pawan Bir Kohli; Janusz Jozef Kulagowski; Marya Liimatta; Patrick Lupardus; Rohan Mendonca; Jeremy Murray; Rebecca Pulk; Steven Shia; Micah Steffek; Savita Ubhayakar; Mark Ultsch; Anne van Abbema; Stuart Ward; Mark Zak

Herein we describe our successful efforts in obtaining C-2 substituted imidazo-pyrrolopyridines with improved JAK1 selectivity relative to JAK2 by targeting an amino acid residue that differs between the two isoforms (JAK1: E966; JAK2: D939). Efforts to improve cellular potency by reducing the polarity of the inhibitors are also detailed. The X-ray crystal structure of a representative inhibitor in complex with the JAK1 enzyme is also disclosed.


Bioorganic & Medicinal Chemistry Letters | 2010

Antagonists of inhibitor of apoptosis proteins based on thiazole amide isosteres.

Frederick Cohen; Michael F. T. Koehler; Philippe Bergeron; Linda O. Elliott; John A. Flygare; Matthew C. Franklin; Lewis J. Gazzard; Stephen F. Keteltas; Kevin Lau; Cuong Ly; Vickie Tsui; Wayne J. Fairbrother

A series of IAP antagonists based on thiazole or benzothiazole amide isosteres was designed and synthesized. These compounds were tested for binding to the XIAP-BIR3 and ML-IAP BIR using a fluorescence polarization assay. The most potent of these compounds, 19a and 33b, were found to have K(i)s of 20-30 nM against ML-IAP and 50-60 nM against XIAP-BIR3.

Collaboration


Dive into the Philippe Bergeron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge