Michael G. Rupert
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael G. Rupert.
Geological Society of America Bulletin | 2010
Susan H. Cannon; Joseph E. Gartner; Michael G. Rupert; John A. Michael; Alan H. Rea; Charles Parrett
Empirical models to estimate the probability of occurrence and volume of postwildfire debris flows can be quickly implemented in a geographic information system (GIS) to generate debris-flow hazard maps either before or immediately following wildfires. Models that can be used to calculate the probability of debris-flow production from individual drainage basins in response to a given storm were developed using logistic regression analyses of a database from 388 basins located in 15 burned areas located throughout the U.S. Intermountain West. The models describe debris-flow probability as a function of readily obtained measures of areal burned extent, soil properties, basin morphology, and rainfall from short-duration and low-recurrence-interval convective rainstorms. A model for estimating the volume of material that may issue from a basin mouth in response to a given storm was developed using multiple linear regression analysis of a database from 56 basins burned by eight fires. This model describes debris-flow volume as a function of the basin gradient, aerial burned extent, and storm rainfall. Applications of a probability model and the volume model for hazard assessments are illustrated using information from the 2003 Hot Creek fire in central Idaho. The predictive strength of the approach in this setting is evaluated using information on the response of this fire to a localized thunderstorm in August 2003. The mapping approach presented here identifies those basins that are most prone to the largest debris-flow events and thus provides information necessary to prioritize areas for postfire erosion mitigation, warnings, and prefire management efforts throughout the Intermountain West.
Journal of Environmental Quality | 2008
Michael G. Rupert
This study evaluated decadal-scale changes of nitrate concentrations in ground water samples collected by the USGS National Water-Quality Assessment Program from 495 wells in 24 well networks across the USA in predominantly agricultural areas. Each well network was sampled once during 1988-1995 and resampled once during 2000-2004. Statistical tests of decadal-scale changes of nitrate concentrations in water from all 495 wells combined indicate there is a significant increase in nitrate concentrations in the data set as a whole. Eight out of the 24 well networks, or about 33%, had significant changes of nitrate concentrations. Of the eight well networks with significant decadal-scale changes of nitrate, all except one, the Willamette Valley of Oregon, had increasing nitrate concentrations. Median nitrate concentrations of three of those eight well networks increased above the USEPA maximum contaminant level of 10 mg L(-1). Nitrate in water from wells with reduced conditions had significantly smaller decadal-scale changes in nitrate concentrations than oxidized and mixed waters. A subset of wells had data on ground water recharge date; nitrate concentrations increased in response to the increase of N fertilizer use since about 1950. Determining ground water recharge dates is an important component of a ground water trends investigation because recharge dates provide a link between changes in ground water quality and changes in land-use practices.
Ground Water | 2014
Patricia L. Toccalino; Robert J. Gilliom; Bruce D. Lindsey; Michael G. Rupert
The national occurrence of 83 pesticide compounds in groundwater of the United States and decadal-scale changes in concentrations for 35 compounds were assessed for the 20-year period from 1993-2011. Samples were collected from 1271 wells in 58 nationally distributed well networks. Networks consisted of shallow (mostly monitoring) wells in agricultural and urban land-use areas and deeper (mostly domestic and public supply) wells in major aquifers in mixed land-use areas. Wells were sampled once during 1993-2001 and once during 2002-2011. Pesticides were frequently detected (53% of all samples), but concentrations seldom exceeded human-health benchmarks (1.8% of all samples). The five most frequently detected pesticide compounds-atrazine, deethylatrazine, simazine, metolachlor, and prometon-each had statistically significant (p < 0.1) changes in concentrations between decades in one or more categories of well networks nationally aggregated by land use. For agricultural networks, concentrations of atrazine, metolachlor, and prometon decreased from the first decade to the second decade. For urban networks, deethylatrazine concentrations increased and prometon concentrations decreased. For major aquifers, concentrations of deethylatrazine and simazine increased. The directions of concentration changes for individual well networks generally were consistent with changes determined from nationally aggregated data. Altogether, 36 of the 58 individual well networks had statistically significant changes in concentrations of one or more pesticides between decades, with the majority of changes attributed to the five most frequently detected pesticide compounds. The magnitudes of median decadal-scale concentration changes were small-ranging from -0.09 to 0.03 µg/L-and were 35- to 230,000-fold less than human-health benchmarks.
Scientific Investigations Report | 2012
Lonna M. Frans; Michael G. Rupert; Charles D. Hunt; Kenneth D. Skinner
This assessment of groundwater-quality conditions of the Columbia Plateau, Snake River Plain, and Oahu for the period 1992–2010 is part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program. It shows where, when, why, and how specific water-quality conditions occur in groundwater of the three study areas and yields science-based implications for assessing and managing the quality of these water resources. The primary aquifers in the Columbia Plateau, Snake River Plain, and Oahu are mostly composed of fractured basalt, which makes their hydrology and geochemistry similar. In spite of the hydrogeologic similarities, there are climatic differences that affect the agricultural practices overlying the aquifers, which in turn affect the groundwater quality. Understanding groundwater-quality conditions and the natural and human factors that control groundwater quality is important because of the implications to human health, the sustainability of rural agricultural economies, and the substantial costs associated with land and water management, conservation, and regulation. The principal regional aquifers of the Columbia Plateau, Snake River Plain, and Oahu are highly vulnerable to contamination by chemicals applied at the land surface; essentially, they are as vulnerable as many shallow surficial aquifers elsewhere. The permeable and largely unconfined character of principal aquifers in the Columbia Plateau, Snake River Plain, and Oahu allow water and chemicals to infiltrate to the water table despite depths to water commonly in the hundreds of feet. The aquifers are essentially unconfined over large areas, having few extensive clay layers to impede infiltration through permeable volcanic rock and alluvial sediments. Agriculture is intensive in all three study areas, and heavy irrigation has imposed large artificial flows of irrigation recharge that rival or exceed natural recharge rates. Fertilizers and pesticides applied at land surface are leached from soil and transported to deep water tables with the infiltrating irrigation recharge, resulting in a layer of degraded water quality overlying better quality regional groundwater beneath. This “irrigation-recharge layer” is best known on Oahu, where it has been studied since the 1960s; however, the extent of nitrate and pesticide contamination in the Columbia Plateau and Snake River Plain indicate that the same situation exists in those areas. Contamination from agricultural and urban activities is present not only at shallow depths in surficial materials of the three areas, but extends regionally in the deep, principal bedrock aquifers that are tapped for drinking water by domestic and public-supply wells. Naturally occurring constituents and nitrate concentrations above human-health benchmarks— Maximum Contaminant Levels (MCLs), and Health-Based Screening Levels (HBSLs)—were more common in the Columbia Plateau and the Snake River Plain than in Oahu. Concentrations of anthropogenic constituents (constituents related to human activities) above human-health benchmarks were more common in Oahu. Naturally occurring contaminants, such as arsenic and radon, may be present in groundwater at concentrations of potential concern for human health in relatively undeveloped settings that otherwise may not be perceived as susceptible to contamination. Even though the median depth to groundwater in Oahu is more than 300 feet, the common occurrence of anthropogenic compounds in groundwater indicates that Oahu has a high susceptibility to contamination. Nitrate concentrations in groundwater were above the national background concentrations of 1 milligram per liter (mg/L) in all three study areas. In the Columbia Plateau, nitrate exceeded the human-health benchmark of 10 mg/L in 20 percent of the wells sampled. In the Snake River Plain, nitrate exceeded the human-health benchmark of 10 mg/L in 3 percent of the wells sampled. Nitrate can persist in groundwater for years and even decades in the oxygen-rich groundwater of the Columbia Plateau and the Snake River Plain, so prudent groundwater protection measures are critical to protect drinking water resources by reducing nitrate leaching from the land surface. Nitrate logistic regression models indicated that areas with a high percentage of land in crops (such as potatoes or sugarcane) and soils with low amounts of organic matter are most likely to have elevated nitrate concentrations in the groundwater. Areas where agricultural activities were 2 Groundwater Quality in Columbia Plateau, Snake River Plain, and Oahu Basaltic-Rock and Basin-Fill Aquifers, 1992–2010 absent had much lower probabilities of detecting elevated nitrate concentrations. The Columbia Plateau had a much higher probability of having elevated nitrate concentrations, with most of the land area having greater than a 50 percent probability of elevated nitrate concentrations. Oahu and the Snake River Plain had a much lower probability of having elevated nitrate concentrations because of their lower percentage of agricultural land. Pesticides were detected at many sites in groundwater of the Columbia Plateau, Snake River Plain, and Oahu but generally at low concentrations below human-health benchmarks. Atrazine and its degradate (a compound produced from the breakdown of a parent pesticide), deethylatrazine, were the most commonly detected pesticides in groundwater sampled in the Columbia Plateau and Snake River Plain. Bromacil was the most commonly detected pesticide on Oahu. The other pesticides most commonly detected in the study areas include simazine, hexazinone, metribuzin, diuron, prometon, metolachlor, p,p’-DDE, dieldrin, 2-4-D, and alachlor. DDE (a degradate of DDT) and dieldrin are still being detected in groundwater despite having been banned for more than 30 years. Codetection of multiple pesticides in water from a single well was common. The widespread occurrence of pesticides in groundwater in the study areas indicates that the groundwater is highly susceptible to pesticide contamination. Some pesticides were detected in groundwater samples from all three study areas, but other pesticides were detected only in samples from Oahu, or only in samples from the Columbia Plateau and Snake River Plain. This is because some pesticides (such as atrazine) are broad-spectrum pesticides that are used on many crops in many different areas of the United States. Other pesticides (such as simazine, metribuzin, and metolachlor) are used on row crops (such as potatoes, barley, and alfalfa) grown in the Columbia Plateau and Snake River Plain, but not on pineapple or sugarcane grown in Oahu. Atrazine logistic-regression models indicate that areas with a high percentage of land in crops (such as potatoes or sugarcane), a low percentage of fallow land, and highly permeable soils with low amounts of organic matter are most likely to have atrazine detected in the groundwater. Areas where agricultural activities were absent had much lower probabilities of atrazine being detected. The Snake River Plain had a much higher probability of atrazine detections, with more than 50 percent of the land area having greater than a 50 percent probability of atrazine contamination. Oahu had a much lower probability of atrazine contamination, with only 24 percent of the land area having greater than a 50 percent probability of atrazine contamination. Oahu and the Columbia Plateau had some of the highest percentages of soil fumigant detections in groundwater in the United States. Soil fumigants are volatile organic compounds (VOCs) used as pesticides, which are applied to soils to reduce populations of plant parasitic nematodes (harmful rootworms), weeds, fungal pathogens, and other soil-borne microorganisms. They are used in Oahu and the Columbia Plateau on crops such as pineapple and potatoes. All three areas (Columbia Plateau, Snake River Plain, and Oahu) had fumigant concentrations exceeding human-health benchmarks for drinking water. Introduction Since 1991, the National Water-Quality Assessment (NAWQA) program of the U.S. Geological Survey (USGS) has measured water-quality status and trends in major aquifer systems throughout the United States (Gilliom and others, 1995). Pilot efforts were undertaken as early as 1986 in some areas in the United States (Hirsch and others, 1988). Part of the NAWQA sampling effort included sampling of basaltic aquifers in Washington, Idaho, and Hawaii, where these important aquifers serve a population of more than two million people and billions of dollars of agricultural industry. Water-quality data used in this study were collected to assess the effects of primary land use and hydrologic conditions on the concentration and distribution of anthropogenic and naturally occurring compounds in shallow groundwater within individual NAWQA study units (Gilliom and others, 1995). In most groundwater basins, the quality of shallow groundwater is influenced over relatively short time scales by near-surface activities and, therefore, can be used as an indicator of land-use effects on shallow aquifers (Barbash and Resek, 1996). Although shallow aquifers are not typically used as municipal drinking-water supplies, domestic wells, which are typically untreated, frequently withdraw water from these aquifers for drinking and other household use. National studies have indicated that nonpoint chemical contamination of groundwater in urban and agricultural land-use settings is occurring (U.S. Geological Survey, 2001). Purpose and Scope The objective of this report was to evaluate the effect of agricultural and urban land uses on groundwater quality in three areas with similar aquifer properties: Columbia Plateau basaltic-rock aquifers, Snake River Plain basaltic-rock aquifers, and Hawaiian volcanic-rock aquifers (only the island of Oahu was studied in Hawaii so that project resources and funding could be concentrated on the most populous island, where w
Ground Water | 2001
Michael G. Rupert
Ground Water | 2000
L. N. Plummer; Michael G. Rupert; Eurybiades Busenberg; Peter Schlosser
Scientific Investigations Report | 2012
Bruce D. Lindsey; Michael G. Rupert
Open-File Report | 2009
Susan H. Cannon; Joseph E. Gartner; Michael G. Rupert; John A. Michael; Dennis M. Staley; Bruce B. Worstell
Open-File Report | 2008
Michael G. Rupert; Susan H. Cannon; Joseph E. Gartner; John A. Michael; Dennis R. Helsel
Open-File Report | 2003
Susan H. Cannon; Joseph E. Gartner; Michael G. Rupert; John A. Michael; Dean Djokic; Sreeresh Sreedhar