Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Pultz is active.

Publication


Featured researches published by Michael J. Pultz.


Antimicrobial Agents and Chemotherapy | 2008

Both Oral Metronidazole and Oral Vancomycin Promote Persistent Overgrowth of Vancomycin-Resistant Enterococci during Treatment of Clostridium difficile-Associated Disease

Wafa N. Al-Nassir; Ajay K. Sethi; Yuejin Li; Michael J. Pultz; Michelle M. Riggs; Curtis J. Donskey

ABSTRACT For treatment of mild to moderate Clostridium difficile-associated disease (CDAD), oral metronidazole has been recommended as the preferred agent, in part due to concern that vancomycin may be more likely to promote colonization by vancomycin-resistant enterococci (VRE). We performed a prospective observational study to examine the effects of oral metronidazole or vancomycin treatment of CDAD on acquisition and concentration of VRE stool colonization. Before, during, and after 90 courses of CDAD therapy, stool samples were cultured for VRE, and the concentrations were quantified. Eighty-seven subjects (97%) had received antibiotics within the past month. For 56 treatment courses in which preexisting VRE colonization was present, metronidazole (n = 37 courses) and vancomycin (n = 19 courses), each promoted persistent VRE overgrowth during therapy, and the concentration decreased significantly in both groups by ∼2 weeks after completion of treatment (P <0.049). For 34 treatment courses in which baseline cultures were negative for VRE, new detection of VRE stool colonization occurred during 3 (14%) of the 22 courses of metronidazole and 1 (8%) of the 12 courses of vancomycin (P = 1.0). These results demonstrate that both oral metronidazole and oral vancomycin promote the overgrowth of VRE during treatment of CDAD. New CDAD treatments are needed that are less likely to disrupt the intestinal microflora and promote overgrowth of healthcare-associated pathogens.


Antimicrobial Agents and Chemotherapy | 2007

Vegetative Clostridium difficile Survives in Room Air on Moist Surfaces and in Gastric Contents with Reduced Acidity: a Potential Mechanism To Explain the Association between Proton Pump Inhibitors and C. difficile-Associated Diarrhea?

Robin L.P. Jump; Michael J. Pultz; Curtis J. Donskey

ABSTRACT Proton pump inhibitors (PPIs) have been identified as a risk factor for Clostridium difficile-associated diarrhea (CDAD), though the mechanism is unclear because gastric acid does not kill C. difficile spores. We hypothesized that the vegetative form of C. difficile, which is killed by acid, could contribute to disease pathogenesis if it survives in room air and in gastric contents with elevated pH. We compared the numbers of C. difficile spores and vegetative cells in stools of patients prior to and during the treatment of CDAD. We assessed the survival of vegetative cells on moist or dry surfaces in room air versus anaerobic conditions and in human gastric contents, in pH-adjusted gastric contents, and in gastric contents from individuals receiving PPI therapy. Stool samples obtained from patients prior to the initiation of antibiotic treatment for C. difficile contained ∼10-fold more vegetative cells than spores. On dry surfaces, vegetative C. difficile cells died rapidly, whereas they remained viable for up to 6 h on moist surfaces in room air. Vegetative C. difficile cells had only marginal survival in gastric contents at low pH; adjustment to a pH of >5 resulted in survival similar to that in the phosphate-buffered saline control. The survival of vegetative C. difficile in gastric contents obtained from patients receiving PPIs was also increased at a pH of >5. The ability of the vegetative form of C. difficile to survive on moist surfaces and in gastric contents with an elevated pH suggests a potential mechanism by which PPI therapy could increase the risk of acquiring C. difficile.


BMC Infectious Diseases | 2010

Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms

Michelle M. Nerandzic; Jennifer L. Cadnum; Michael J. Pultz; Curtis J. Donskey

BackgroundEnvironmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe, rapid, and automated.MethodsThe Tru-D™ Rapid Room Disinfection device is a mobile, fully-automated room decontamination technology that utilizes ultraviolet-C irradiation to kill pathogens. We examined the efficacy of environmental disinfection using the Tru-D device in the laboratory and in rooms of hospitalized patients. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE) were collected from commonly touched surfaces before and after use of Tru-D.ResultsOn inoculated surfaces, application of Tru-D at a reflected dose of 22,000 μWs/cm2 for ~45 minutes consistently reduced recovery of C. difficile spores and MRSA by >2-3 log10 colony forming units (CFU)/cm2 and of VRE by >3-4 log10 CFU/cm2. Similar killing of MRSA and VRE was achieved in ~20 minutes at a reflected dose of 12,000 μWs/cm2, but killing of C. difficile spores was reduced. Disinfection of hospital rooms with Tru-D reduced the frequency of positive MRSA and VRE cultures by 93% and of C. difficile cultures by 80%. After routine hospital cleaning of the rooms of MRSA carriers, 18% of sites under the edges of bedside tables (i.e., a frequently touched site not easily amenable to manual application of disinfectant) were contaminated with MRSA, versus 0% after Tru-D (P < 0.001). The system required <5 minutes to set up and did not require continuous monitoring.ConclusionsThe Tru-D Rapid Room Disinfection device is a novel, automated, and efficient environmental disinfection technology that significantly reduces C. difficile, VRE and MRSA contamination on commonly touched hospital surfaces.


Antimicrobial Agents and Chemotherapy | 2006

In vitro killing of nosocomial pathogens by acid and acidified nitrite.

Agam Rao; Robin L.P. Jump; Nicole J. Pultz; Michael J. Pultz; Curtis J. Donskey

ABSTRACT Exposure to pH 1 or 2 buffers or acidic gastric contents resulted in the killing of vancomycin-resistant Enterococcus sp., Klebsiella pneumoniae, Staphylococcus aureus, and Candida glabrata but not Clostridium difficile spores. Nitrite enhanced killing under acidic conditions, but significant killing of C. difficile spores required nitrite concentrations above usual physiological levels.


Antimicrobial Agents and Chemotherapy | 2011

Effect of Antibiotic Treatment on Establishment and Elimination of Intestinal Colonization by KPC-Producing Klebsiella pneumoniae in Mice

Federico Perez; Michael J. Pultz; Andrea Endimiani; Robert A. Bonomo; Curtis J. Donskey

ABSTRACT An understanding of the impact of antibiotics on the intestinal reservoir of KPC carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is important to prevent its emergence. We used a mouse model to examine the effect of antibiotic treatment on the establishment and elimination of intestinal colonization with KPC-Kp. Mice (10 per group) received subcutaneous antibiotics daily for 8 days. On day 3 of treatment, 103 CFU of KPC-Kp was given orogastrically, and concentrations of KPC-Kp in stool were monitored. Additional experiments assessed the effects of antibiotic treatment on concentrations of total anaerobes and Bacteroides spp. in stool and the efficacy of orogastric gentamicin and polymyxin E in suppressing KPC-Kp colonization. Of four antibiotics with minimal activity against the KPC-Kp test strain (MIC ≥ 16 μg/ml), those that suppressed total anaerobes and bacteroides (i.e., clindamycin and piperacillin-tazobactam) promoted colonization by KPC-Kp (P < 0.001), whereas agents that did not suppress total anaerobes or bacteroides (i.e., ciprofloxacin and cefepime) did not (P = 0.35). Of two agents with moderate activity against the KPC-Kp test strain, ertapenem (MIC, 4 μg/ml) did not promote colonization by KPC-Kp, whereas tigecycline (MIC, 3 μg/ml) did (P < 0.001), despite not reducing levels of total anaerobes or bacteroides. Orogastric treatment with gentamicin and polymyxin E suppressed KPC-Kp to undetectable levels in the majority of mice. These data suggest that antibiotics that disturb the intestinal anaerobic microflora and lack significant activity against KPC-Kp promote colonization by this organism. The administration of nonabsorbed oral antibiotics may be an effective strategy to suppress colonization with KPC-Kp.


Antimicrobial Agents and Chemotherapy | 2009

Examination of Potential Mechanisms To Explain the Association between Proton Pump Inhibitors and Clostridium difficile Infection

Michelle M. Nerandzic; Michael J. Pultz; Curtis J. Donskey

ABSTRACT Proton pump inhibitors (PPIs) have been associated with Clostridium difficile infection (CDI) in several recent studies. However, other studies have not shown this association, and the mechanism by which PPIs might promote CDI has not been elucidated. We hypothesized two possible mechanisms of causation: first, by raising pH, PPIs may prevent gastric contents from killing C. difficile spores; second, gastric contents of PPI-treated patients may promote germination and outgrowth of C. difficile spores. Survival rates of spores from six different strains of C. difficile in acidic gastric contents were assessed using quantitative cultures on selective media. Germination and outgrowth of spores were assessed by heat shock at 80°C, phase-contrast microscopy, and ethanol shock after incubation for 24 h in the gastric contents of patients and in the gastric, small intestinal, and cecal contents of mice. C. difficile spores survived and remained dormant in nonbilious gastric contents with acidic pH. Germination did not occur in unmodified gastric contents of patients but did occur with the addition of taurocholic acid and amino acids. In mice, germination did not occur in gastric contents but did occur in small intestinal and cecal contents. In summary, C. difficile spores survived in acidic gastric contents and did not undergo germination and outgrowth in gastric contents, probably due to lack of essential germinants, such as taurocholic acid. Our results suggest that the effects of PPIs in the stomach do not contribute to the pathogenesis of CDI.


Antimicrobial Agents and Chemotherapy | 2011

Tigecycline Exhibits Inhibitory Activity against Clostridium difficile in the Colon of Mice and Does Not Promote Growth or Toxin Production

Robin L.P. Jump; Yuejin Li; Michael J. Pultz; Georgios Kypriotakis; Curtis J. Donskey

ABSTRACT Tigecycline is a broad-spectrum glycylcycline antibiotic with potent in vitro activity against Clostridium difficile. We used a mouse model to test the hypothesis that tigecycline has a low propensity to promote colonization and toxin production by C. difficile due to inhibitory activity in the colon. Mice (5 to 8 per group) received subcutaneous injections of tigecycline (low and high doses) alone or in combination with clindamycin for 6 days. Growth of and toxin production by 3 strains of C. difficile (tigecycline MICs ≤ 0.012 μg/ml) were measured in cecal contents collected 6 h or 3 days after the final antibiotic dose. Antibiotic concentrations were measured using a bioassay, and concentrations of total anaerobes and Bacteroides spp. were measured. The effects of tigecycline on rendering mice susceptible to colonization with and reducing the burden of C. difficile were also examined. In comparison to saline controls, clindamycin promoted the growth of C. difficile (P < 0.001) in cecal contents, whereas tigecycline did not. Tigecycline did not suppress total anaerobes or Bacteroides spp. in comparison to saline controls. Concurrent administration of tigecycline prevented clindamycin-induced promotion of C. difficile in cecal contents collected 6 h or 3 days (high dose only) after the final antibiotic dose. Tigecycline did not promote the establishment of colonization in mice, yet it did not reduce concentrations of C. difficile in animals with established colonization. In summary, tigecycline did not promote the growth of or toxin production by C. difficile, probably due to inhibitory activity against C. difficile and relative sparing of indigenous anaerobic microflora.


Antimicrobial Agents and Chemotherapy | 2014

Gastrointestinal Colonization with a Cephalosporinase-Producing Bacteroides Species Preserves Colonization Resistance against Vancomycin-Resistant Enterococcus and Clostridium difficile in Cephalosporin-Treated Mice

Usha Stiefel; Michelle M. Nerandzic; Michael J. Pultz; Curtis J. Donskey

ABSTRACT Antibiotics that are excreted into the intestinal tract may disrupt the indigenous intestinal microbiota and promote colonization by health care-associated pathogens. β-Lactam, or penicillin-type, antibiotics are among the most widely utilized antibiotics worldwide and may also adversely affect the microbiota. Many bacteria are capable, however, of producing β-lactamase enzymes that inactivate β-lactam antibiotics. We hypothesized that prior establishment of intestinal colonization with a β-lactamase-producing anaerobe might prevent these adverse effects of β-lactam antibiotics, by inactivating the portion of antibiotic that is excreted into the intestinal tract. Here, mice with a previously abolished microbiota received either oral normal saline or an oral cephalosporinase-producing strain of Bacteroides thetaiotaomicron for 3 days. Mice then received 3 days of subcutaneous ceftriaxone, followed by either oral administration of vancomycin-resistant Enterococcus (VRE) or sacrifice and assessment of in vitro growth of epidemic and nonepidemic strains of Clostridium difficile in murine cecal contents. Stool concentrations of VRE and ceftriaxone were measured, cecal levels of C. difficile 24 h after incubation were quantified, and denaturing gradient gel electrophoresis (DGGE) of microbial 16S rRNA genes was performed to evaluate the antibiotic effect on the microbiota. The results demonstrated that establishment of prior colonization with a β-lactamase-producing intestinal anaerobe inactivated intraintestinal ceftriaxone during treatment with this antibiotic, allowed recovery of the normal microbiota despite systemic ceftriaxone, and prevented overgrowth with VRE and epidemic and nonepidemic strains of C. difficile in mice. These findings describe a novel probiotic strategy to potentially prevent pathogen colonization in hospitalized patients.


Emerging Infectious Diseases | 2010

Multihospital outbreak of Clostridium difficile infection, Cleveland, Ohio, USA.

Robin L.P. Jump; Michelle M. Riggs; Ajay K. Sethi; Michael J. Pultz; Tracie Ellis-Reid; William Riebel; Dale N. Gerding; Robert A. Salata; Curtis J. Donskey

To determine whether a multihospital Clostridium difficile outbreak was associated with epidemic strains and whether use of particular fluoroquinolones was associated with increased infection rates, we cultured feces from C. difficile–infected patients. Use of fluoroquionolones with enhanced antianaerobic activity was not associated with increased infection rates.


American Journal of Infection Control | 2009

A pilot study to assess frequency of carriage and routes of acquisition of Staphylococcus aureus by healthy infants

Delores M. Gries; Tamatha F. Zemzars; Katy A. Gibson; Elisa O'Hern; Meera Iyer; Mary Myers; Michael J. Pultz; Yuejin Li; Curtis J. Donskey

Healthy infants frequently acquire Staphylococcus aureus colonization; however, the modes of transmission are not well defined. In this study, 8 of 23 (35%) infants cultured at age 2 weeks acquired S aureus carriage, but only 1 infant had a family member with nasal carriage of the same clone, suggesting that sources other than colonized family members may account for a significant proportion of cases.

Collaboration


Dive into the Michael J. Pultz's collaboration.

Top Co-Authors

Avatar

Curtis J. Donskey

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Robin L.P. Jump

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Michelle M. Nerandzic

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ajay K. Sethi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Usha Stiefel

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Agam Rao

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Dale N. Gerding

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Robert A. Salata

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

A. Rao

University Hospitals of Cleveland

View shared research outputs
Top Co-Authors

Avatar

Andrea Endimiani

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge