Michael J. Raher
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael J. Raher.
American Journal of Respiratory Cell and Molecular Biology | 2009
Benjamin D. Medoff; Yoshihisa Okamoto; Patricio Leyton; Meiqian Weng; Barry P. Sandall; Michael J. Raher; Shinji Kihara; Kenneth D. Bloch; Peter Libby; Andrew D. Luster
Obesity is associated with an increased incidence and severity of asthma, as well as other lung disorders, such as pulmonary hypertension. Adiponectin (APN), an antiinflammatory adipocytokine, circulates at lower levels in the obese, which is thought to contribute to obesity-related inflammatory diseases. We sought to determine the effects of APN deficiency in a murine model of chronic asthma. Allergic airway inflammation was induced in APN-deficient mice (APN(-/-)) using sensitization without adjuvant followed by airway challenge with ovalbumin. The mice were then analyzed for changes in inflammation and lung remodeling. APN(-/-) mice in this model develop increased allergic airway inflammation compared with wild-type mice, with greater accumulation of eosinophils and monocytes in the airways associated with elevated lung chemokine levels. Surprisingly, APN(-/-) mice developed severe pulmonary arterial muscularization and pulmonary arterial hypertension in this model, whereas wild-type mice had only mild vascular remodeling and comparatively less pulmonary arterial hypertension. Our findings demonstrate that APN modulates allergic inflammation and pulmonary vascular remodeling in a model of chronic asthma. These data provide a possible mechanism for the association between obesity and asthma, and suggest a potential novel link between obesity, inflammatory lung disease, and pulmonary hypertension.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Abir Mukherjee; Yisrael Sidis; Amy Mahan; Michael J. Raher; Yin Xia; Evan D. Rosen; Kenneth D. Bloch; Melissa Thomas; Alan L. Schneyer
Activin and myostatin are related members of the TGF-β growth factor superfamily. FSTL3 (Follistatin-like 3) is an activin and myostatin antagonist whose physiological role in adults remains to be determined. We found that homozygous FSTL3 knockout adults developed a distinct group of metabolic phenotypes, including increased pancreatic islet number and size, β cell hyperplasia, decreased visceral fat mass, improved glucose tolerance, and enhanced insulin sensitivity, changes that might benefit obese, insulin-resistant patients. The mice also developed hepatic steatosis and mild hypertension but exhibited no alteration of muscle or body weight. This combination of phenotypes appears to arise from increased activin and myostatin bioactivity in specific tissues resulting from the absence of the FSTL3 antagonist. Thus, the enlarged islets and β cell number likely result from increased activin action. Reduced visceral fat is consistent with a role for increased myostatin action in regulating fat deposition, which, in turn, may be partly responsible for the enhanced glucose tolerance and insulin sensitivity. Our results demonstrate that FSTL3 regulation of activin and myostatin is critical for normal adult metabolic homeostasis, suggesting that pharmacological manipulation of FSTL3 activity might simultaneously reduce visceral adiposity, increase β cell mass, and improve insulin sensitivity.
Circulation | 2008
Binglan Yu; Michael J. Raher; Gian Paolo Volpato; Kenneth D. Bloch; Fumito Ichinose; Warren M. Zapol
Background— One of the major obstacles hindering the clinical development of a cell-free, hemoglobin-based oxygen carrier (HBOC) is systemic vasoconstriction. Methods and Results— Experiments were performed in healthy mice and lambs by infusion of either murine tetrameric hemoglobin (0.48 g/kg) or glutaraldehyde-polymerized bovine hemoglobin (HBOC-201, 1.44 g/kg). We observed that intravenous infusion of either murine tetrameric hemoglobin or HBOC-201 induced prolonged systemic vasoconstriction in wild-type mice but not in mice congenitally deficient in endothelial nitric oxide (NO) synthase (NOS3). Treatment of wild-type mice by breathing NO at 80 ppm in air for 15 or 60 minutes or with 200 ppm NO for 7 minutes prevented the systemic hypertension induced by subsequent intravenous administration of murine tetrameric hemoglobin or HBOC-201 and did not result in conversion of plasma hemoglobin to methemoglobin. Intravenous administration of sodium nitrite (48 nmol) 5 minutes before infusion of murine tetrameric hemoglobin also prevented the development of systemic hypertension. In awake lambs, breathing NO at 80 ppm for 1 hour prevented the systemic hypertension caused by subsequent infusion of HBOC-201. Conclusions— These findings demonstrate that HBOC can cause systemic vasoconstriction by scavenging NO produced by NOS3. Moreover, in 2 species, inhaled NO administered before the intravenous infusion of HBOC can prevent systemic vasoconstriction without causing methemoglobinemia.
Circulation | 2007
Tomas G. Neilan; Sarah L. Blake; Fumito Ichinose; Michael J. Raher; Emmanuel Buys; Davinder S. Jassal; Elissa Furutani; Teresa M. Perez-Sanz; Amanda R. Graveline; Stefan Janssens; Michael H. Picard; Marielle Scherrer-Crosbie; Kenneth D. Bloch
Background— Flavoprotein reductases are involved in the generation of reactive oxygen species by doxorubicin. The objective of the present study was to determine whether or not one flavoprotein reductase, endothelial nitric oxide synthase (nitric oxide synthase 3 [NOS3]), contributes to the cardiac dysfunction and injury seen after the administration of doxorubicin. Methods and Results— A single dose of doxorubicin (20 mg/kg) was administered to wild-type (WT) mice, NOS3-deficient mice (NOS3−/−), and mice with cardiomyocyte-specific overexpression of NOS3 (NOS3-TG). Cardiac function was assessed after 5 days with the use of echocardiography. Doxorubicin decreased left ventricular fractional shortening from 57±2% to 47±1% (P<0.001) in WT mice. Compared with WT mice, fractional shortening was greater in NOS3−/− and less in NOS3-TG after doxorubicin (55±1% and 35±2%; P<0.001 for both). Cardiac tissue was harvested from additional mice at 24 hours after doxorubicin administration for measurement of cell death and reactive oxygen species production. Doxorubicin induced cardiac cell death and reactive oxygen species production in WT mice, effects that were attenuated in NOS3−/− and were more marked in NOS3-TG mice. Finally, WT and NOS3−/− mice were treated with a lower dose of doxorubicin (4 mg/kg) administered weekly over 5 weeks. Sixteen weeks after beginning doxorubicin treatment, fractional shortening was greater in NOS3−/− than in WT mice (45±2% versus 28±1%; P<0.001), and mortality was reduced (7% versus 60%; P<0.001). Conclusions— These findings implicate NOS3 as a key mediator in the development of left ventricular dysfunction after administration of doxorubicin.
Circulation | 2005
Igal A. Sebag; Mark D. Handschumacher; Fumito Ichinose; John G. Morgan; Ana Clara Tude Rodrigues; J. Luis Guerrero; Wolfgang Steudel; Michael J. Raher; Elkan F. Halpern; Geneviève Derumeaux; Kenneth D. Bloch; Michael H. Picard; Marielle Scherrer-Crosbie
Background—Tissue Doppler imaging (TDI) is a novel echocardiographic method to quantify regional myocardial function. The objective of this study was to assess whether myocardial velocities and strain rate (SR) could be obtained by TDI in mice and whether these indices accurately quantified alterations in left ventricular (LV) systolic function. Methods and Results—TDI was performed in 10 healthy mice to measure endocardial (vendo) and epicardial systolic velocities and SR. In further experiments, TDI indices were compared with dP/dtmax and with sonomicrometer-derived regional velocities, at rest and after administration of dobutamine or esmolol. TDI indices were also studied serially in 8 mice before and 4 and 7 hours after endotoxin challenge. Myocardial velocities and SR were obtained in all mice with low measurement variability. TDI indices increased with administration of dobutamine (vendo from 2.2±0.3 to 3.8±0.2 cm/s [P<0.01]; SR from 12±2 to 20±2 s−1 [P<0.05]) and decreased with administration of esmolol (vendo 1.4±0.2 cm/s [P<0.05]; SR 6±1 s−1 [P<0.01]). Both indices correlated strongly with dP/dtmax (r2=0.79 for SR and r2= 0.69 for vendo; both P<0.0001). SR and shortening fraction were predictors of dP/dtmax even after adjustment for the confounding effect of the other variables. Vendo correlated closely with sonomicrometer-measured velocity (r2=0.71, P<0.0005). After endotoxin challenge, decreases in both vendo and SR were detected before decreases in shortening fraction became manifest. Conclusions—Myocardial velocities and SR can be measured noninvasively in mice with the use of TDI. Both indices are sensitive markers for quantifying LV global and regional function in mice.
Cardiovascular Research | 2008
Emmanuel Buys; Patrick Sips; Pieter Vermeersch; Michael J. Raher; Elke Rogge; Fumito Ichinose; Mieke Dewerchin; Kenneth D. Bloch; Stefan Janssens; Peter Brouckaert
AIM The effects of nitric oxide (NO) in the cardiovascular system are attributed in part to cGMP synthesis by the alpha1beta1 isoform of soluble guanylate cyclase (sGC). Because available sGC inhibitors are neither enzyme- nor isoform-specific, we generated knockout mice for the alpha1 subunit (sGCalpha1(-/-) mice) in order to investigate the function of sGCalpha1beta1 in the regulation of blood pressure and cardiac function. METHODS AND RESULTS Blood pressure was evaluated, using both non-invasive and invasive haemodynamic techniques, in intact and gonadectomized male and female sGCalpha1(-/-) and wild-type (WT) mice. Cardiac function was assessed with a conductance catheter inserted in the left ventricle of male and female sGCalpha1(-/-) and WT mice. Male sGCalpha1(-/-) mice developed hypertension (147 +/- 2 mmHg), whereas female sGCalpha1(-/-) mice did not (115 +/- 2 mmHg). Orchidectomy and treatment with an androgen receptor antagonist prevented hypertension, while ovariectomy did not influence the phenotype. Chronic testosterone treatment increased blood pressure in ovariectomized sGCalpha1(-/-) mice but not in WT mice. The NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride raised blood pressure similarly in male and female WT and sGCalpha1(-/-) mice. The ability of NO donor compounds to reduce blood pressure was slightly attenuated in sGCalpha1(-/-) male and female mice as compared to WT mice. The direct sGC stimulator BAY 41-2272 reduced blood pressure only in WT mice. Increased cardiac contractility and arterial elastance as well as impaired ventricular relaxation were observed in both male and female sGCalpha1(-/-) mice. CONCLUSION These findings demonstrate that sGCalpha1beta1-derived cGMP signalling has gender-specific and testosterone-dependent cardiovascular effects and reveal that the effects of NO on systemic blood pressure do not require sGCalpha1beta1.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Yan Feng; Huailong Zhao; Xinhua Xu; Emmanuel Buys; Michael J. Raher; Jean C. Bopassa; Hélène Thibault; Marielle Scherrer-Crosbie; Ulrich Schmidt; Wei Chao
MyD88 is an adaptor protein critical for innate immune response against microbial infection and in certain noninfectious tissue injury. The present study examined the role of MyD88 in myocardial inflammation and injury after ischemia-reperfusion (I/R). I/R was produced by coronary artery ligation for 30 min followed by reperfusion. The ratios of area at risk to left ventricle (LV) were similar between wild-type (WT) and MyD88-deficient (MyD88-/-) mice. However, 24 h after I/R, the ratios of myocardial infarction to area at risk were 58% less in MyD88(-/-) than in WT mice (14 +/- 2% vs. 33 +/- 6%, P = 0.01). Serial echocardiographic studies demonstrated that there was no difference in baseline LV contractile function between the two groups. Twenty-four hours after I/R, LV ejection fraction (EF) and fractional shortening (FS) in WT mice were reduced by 44% and 62% (EF, 51 +/- 2%, and FS, 22 +/- 1%, P < 0.001), respectively, and remained depressed on the seventh day after I/R. In comparison, EF and FS in MyD88(-/-) mice were 67 +/- 3% and 33 +/- 2%, respectively, after I/R (P < 0.001 vs. WT). Similarly, LV function, as demonstrated by invasive hemodynamic measurements, was better preserved in MyD88(-/-) compared with WT mice after I/R. Furthermore, when compared with WT mice, MyD88(-/-) mice subjected to I/R had a marked decrease in myocardial inflammation as demonstrated by attenuated neutrophil recruitment and decreased expression of the proinflammatory mediators keratinocyte chemoattractant, monocyte chemoattractant protein-1, and ICAM-1. Taken together, these data suggest that MyD88 modulates myocardial inflammatory injury and contributes to myocardial infarction and LV dysfunction during I/R.
Circulation-cardiovascular Imaging | 2010
Hélène Thibault; Baptiste Kurtz; Michael J. Raher; Rahamthulla S. Shaik; Aaron B. Waxman; Geneviève Derumeaux; Elkan F. Halpern; Kenneth D. Bloch; Marielle Scherrer-Crosbie
Background—Genetically modified mice offer the unique opportunity to gain insight into the pathophysiology of pulmonary arterial hypertension. In mice, right heart catheterization is the only available technique to measure right ventricular systolic pressure (RVSP). However, it is a terminal procedure and does not allow for serial measurements. Our objective was to validate a noninvasive technique to assess RVSP in mice. Methods and Results—Right ventricle catheterization and echocardiography (30-MHz transducer) were simultaneously performed in mice with pulmonary hypertension induced acutely by infusion of a thromboxane analogue, U-46619, or chronically by lung-specific overexpression of interleukin-6. Pulmonary acceleration time (PAT) and ejection time (ET) were measured in the parasternal short-axis view by pulsed-wave Doppler of pulmonary artery flow. Infusion of U-46619 acutely increased RVSP, shortened PAT, and decreased PAT/ET. The pulmonary flow pattern changed from symmetrical at baseline to asymmetrical at higher RVSPs. In wild-type and interleukin-6–overexpressing mice, the PAT correlated linearly with RVSP (r2=−0.67, P<0.0001), as did PAT/ET (r2=−0.76, P<0.0001). Sensitivity and specificity for detecting high RVSP (>32 mm Hg) were 100% (7/7) and 86% (6/7), respectively, for both indices (cutoff values: PAT, <21 ms; PAT/ET, <39%). Intraobserver and interobserver variability of PAT and PAT/ET were <6%. Conclusions—Right ventricular systolic pressure can be estimated noninvasively in mice. Echocardiography is able to detect acute and chronic increases in RVSP with high sensitivity and specificity as well as to assess the effects of treatment on RVSP. This noninvasive technique may permit the characterization of the evolution of pulmonary arterial hypertension in genetically modified mice.Background— Genetically modified mice offer the unique opportunity to gain insight into the pathophysiology of pulmonary arterial hypertension. In mice, right heart catheterization is the only available technique to measure right ventricular systolic pressure (RVSP). However, it is a terminal procedure and does not allow for serial measurements. Our objective was to validate a noninvasive technique to assess RVSP in mice. Methods and Results— Right ventricle catheterization and echocardiography (30-MHz transducer) were simultaneously performed in mice with pulmonary hypertension induced acutely by infusion of a thromboxane analogue, U-46619, or chronically by lung-specific overexpression of interleukin-6. Pulmonary acceleration time (PAT) and ejection time (ET) were measured in the parasternal short-axis view by pulsed-wave Doppler of pulmonary artery flow. Infusion of U-46619 acutely increased RVSP, shortened PAT, and decreased PAT/ET. The pulmonary flow pattern changed from symmetrical at baseline to asymmetrical at higher RVSPs. In wild-type and interleukin-6–overexpressing mice, the PAT correlated linearly with RVSP ( r 2=−0.67, P 32 mm Hg) were 100% (7/7) and 86% (6/7), respectively, for both indices (cutoff values: PAT, <21 ms; PAT/ET, <39%). Intraobserver and interobserver variability of PAT and PAT/ET were <6%. Conclusions— Right ventricular systolic pressure can be estimated noninvasively in mice. Echocardiography is able to detect acute and chronic increases in RVSP with high sensitivity and specificity as well as to assess the effects of treatment on RVSP. This noninvasive technique may permit the characterization of the evolution of pulmonary arterial hypertension in genetically modified mice. Received June 24, 2009; accepted December 2, 2009. # CLINICAL PERSPECTIVE {#article-title-2}
Anesthesiology | 2010
Binglan Yu; Mohd Shahid; Elena M. Egorina; Mikhail A. Sovershaev; Michael J. Raher; Chong Lei; Mei X. Wu; Kenneth D. Bloch; Warren M. Zapol
Background:To date, there is no safe and effective hemoglobin-based oxygen carrier (HBOC) to substitute for erythrocyte transfusion. It is uncertain whether a deficiency of endothelial nitric oxide bioavailability (endothelial dysfunction) prevents or augments HBOC-induced vasoconstriction. Methods:Hemodynamic effects of infusion of PolyHeme (1.08 g hemoglobin/kg; Northfield Laboratories, Evanston, IL) or murine tetrameric hemoglobin (0.48 g hemoglobin/kg) were determined in awake healthy lambs, awake mice, and anesthetized mice. In vitro, a cumulative dose-tension response was obtained by sequential addition of PolyHeme or tetrameric hemoglobin to phenylephrine-precontracted murine aortic rings. Results:Infusion of PolyHeme did not cause systemic hypertension in awake lambs but produced acute systemic and pulmonary vasoconstriction. Infusion of PolyHeme did not cause systemic hypertension in healthy wild-type mice but induced severe systemic vasoconstriction in mice with endothelial dysfunction (either db/db mice or high-fat fed wild-type mice for 4–6 weeks). The db/db mice were more sensitive to systemic vasoconstriction than wild-type mice after the infusion of either tetrameric hemoglobin or PolyHeme. Murine aortic ring studies confirmed that db/db mice have an impaired response to an endothelial-dependent vasodilator and an enhanced vasoconstrictor response to HBOC. Conclusions:Reduction in low molecular weight hemoglobin concentrations to less than 1% is insufficient to abrogate the vasoconstrictor effects of HBOC infusion in healthy awake sheep or in mice with reduced vascular nitric oxide levels associated with endothelial dysfunction. These findings suggest that testing HBOCs in animals with endothelial dysfunction can provide a more sensitive indication of their potential vasoconstrictor effects.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Michael J. Raher; Hélène Thibault; Emmanuel Buys; Darshini Kuruppu; Nobuyuki Shimizu; Anna-Liisa Brownell; Sarah L. Blake; Jennifer Rieusset; Masao Kaneki; Geneviève Derumeaux; Michael H. Picard; Kenneth D. Bloch; Marielle Scherrer-Crosbie
Insulin resistance is an increasingly prevalent condition in humans that frequently clusters with disorders characterized by left ventricular (LV) pressure overload, such as systemic hypertension. To investigate the impact of insulin resistance on LV remodeling and functional response to pressure overload, C57BL6 male mice were fed a high-fat (HFD) or a standard diet (SD) for 9 days and then underwent transverse aortic constriction (TAC). LV size and function were assessed in SD- and HFD-fed mice using serial echocardiography before and 7, 21, and 28 days after TAC. Serial echocardiography was also performed on nonoperated SD- and HFD-fed mice over a period of 6 wk. LV perfusion was assessed before and 7 and 28 days after TAC. Nine days of HFD induced systemic and myocardial insulin resistance (assessed by myocardial 18F-fluorodeoxyglucose uptake), and myocardial perfusion response to acetylcholine was impaired. High-fat feeding for 28 days did not change LV size and function in nonbanded mice; however, TAC induced greater hypertrophy, more marked LV systolic and diastolic dysfunction, and decreased survival in HFD-fed compared with SD-fed mice. Compared with SD-fed mice, myocardial perfusion reserve was decreased 7 days after TAC, and capillary density was decreased 28 days after TAC in HFD-fed mice. A short duration of HFD induces insulin resistance in mice. These metabolic changes are accompanied by increased LV remodeling and dysfunction after TAC, highlighting the impact of insulin resistance in the development of pressure-overload-induced heart failure.