Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marielle Scherrer-Crosbie is active.

Publication


Featured researches published by Marielle Scherrer-Crosbie.


Journal of The American Society of Echocardiography | 2014

Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.

Juan Carlos Plana; Maurizio Galderisi; Ana Barac; Michael S. Ewer; Bonnie Ky; Marielle Scherrer-Crosbie; Javier Ganame; Igal A. Sebag; Luigi P. Badano; Jose Banchs; Daniela Cardinale; Joseph R. Carver; Manuel D. Cerqueira; Jeanne M. DeCara; Thor Edvardsen; Scott D. Flamm; Thomas Force; Brian P. Griffin; Guy Jerusalem; Jennifer E. Liu; Andreia Magalhães; Thomas H. Marwick; Liza Sanchez; Rosa Sicari; Hector R. Villarraga; Patrizio Lancellotti

Cardiac dysfunction resulting from exposure to cancer therapeutics was first recognized in the 1960s, with the widespread introduction of anthracyclines into the oncologic therapeutic armamentarium. Heart failure (HF) associated with anthracyclines was then recognized as an important side effect. As a result, physicians learned to limit their doses to avoid cardiac dysfunction. Several strategies have been used over the past decades to detect it. Two of them evolved over time to be very useful: endomyocardial biopsies and monitoring of left ven- tricular (LV) ejection fraction (LVEF) by cardiac imaging. Examination of endomyocardial biopsies proved to be the most sensitive and spe- cific parameter for the identification of anthracycline-induced LV dysfunction and became the gold standard in the 1970s. However, the interest in endomyocardial biopsy has diminished over time because of the reduction in the cumulative dosages used to treat ma- lignancies, the invasive nature of the procedure, and the remarkable progress made in noninvasive cardiac imaging. The noninvasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially car- diotoxic cancer treatment.


Circulation-cardiovascular Imaging | 2012

Assessment of Echocardiography and Biomarkers for the Extended Prediction of Cardiotoxicity in Patients treated with Anthracyclines, Taxanes and Trastuzumab

Heloisa Sawaya; Igal A. Sebag; Juan Carlos Plana; James L. Januzzi; Bonnie Ky; Timothy C. Tan; Victor Cohen; Jose Banchs; Joseph R. Carver; Susan E. Wiegers; Randolph P. Martin; Michael H. Picard; Robert E. Gerszten; Elkan F. Halpern; Jonathan Passeri; Irene Kuter; Marielle Scherrer-Crosbie

Background—Because cancer patients survive longer, the impact of cardiotoxicity associated with the use of cancer treatments escalates. The present study investigates whether early alterations of myocardial strain and blood biomarkers predict incident cardiotoxicity in patients with breast cancer during treatment with anthracyclines, taxanes, and trastuzumab. Methods and Results—Eighty-one women with newly diagnosed human epidermal growth factor receptor 2–positive breast cancer, treated with anthracyclines followed by taxanes and trastuzumab were enrolled to be evaluated every 3 months during their cancer therapy (total of 15 months) using echocardiograms and blood samples. Left ventricular ejection fraction, peak systolic longitudinal, radial, and circumferential myocardial strain were calculated. Ultrasensitive troponin I, N-terminal pro–B-type natriuretic peptide, and the interleukin family member (ST2) were also measured. Left ventricular ejection fraction decreased (64 ± 5% to 59 ± 6%; P<0.0001) over 15 months. Twenty-six patients (32%, [22%–43%]) developed cardiotoxicity as defined by the Cardiac Review and Evaluation Committee Reviewing Trastuzumab; of these patients, 5 (6%, [2%–14%]) had symptoms of heart failure. Peak systolic longitudinal myocardial strain and ultrasensitive troponin I measured at the completion of anthracyclines treatment predicted the subsequent development of cardiotoxicity; no significant associations were observed for left ventricular ejection fraction, N-terminal pro–B-type natriuretic peptide, and ST2. Longitudinal strain was <19% in all patients who later developed heart failure. Conclusions—In patients with breast cancer treated with anthracyclines, taxanes, and trastuzumab, systolic longitudinal myocardial strain and ultrasensitive troponin I measured at the completion of anthracyclines therapy are useful in the prediction of subsequent cardiotoxicity and may help guide treatment to avoid cardiac side-effects.


Circulation | 2000

Design of a New Surgical Approach for Ventricular Remodeling to Relieve Ischemic Mitral Regurgitation Insights From 3-Dimensional Echocardiography

Noah Liel-Cohen; J. Luis Guerrero; Yutaka Otsuji; Mark D. Handschumacher; Lawrence G. Rudski; Patrick R. Hunziker; Hiroaki Tanabe; Marielle Scherrer-Crosbie; Suzanne Sullivan; Robert A. Levine

BACKGROUND Mechanistic insights from 3D echocardiography (echo) can guide therapy. In particular, ischemic mitral regurgitation (MR) is difficult to repair, often persisting despite annular reduction. We hypothesized that (1) in a chronic infarct model of progressive MR, regurgitation parallels 3D changes in the geometry of mitral leaflet attachments, causing increased leaflet tethering and restricting closure; therefore, (2) MR can be reduced by restoring tethering geometry toward normal, using a new ventricular remodeling approach based on 3D echo findings. METHODS AND RESULTS We studied 10 sheep by 3D echo just after circumflex marginal ligation and 8 weeks later. MR, at first absent, became moderate as the left ventricle (LV) dilated and the papillary muscles shifted posteriorly and mediolaterally, increasing the leaflet tethering distance from papillary muscle tips to the anterior mitral annulus (P<0.0001). To counteract these shifts, the LV was remodeled by plication of the infarct region to reduce myocardial bulging, without muscle excision or cardiopulmonary bypass. Immediately and up to 2 months after plication, MR was reduced to trace-to-mild as tethering distance was decreased (P<0.0001). LV ejection fraction, global LV end-systolic volume, and mitral annular area were relatively unchanged. By multiple regression, the only independent predictor of MR was tethering distance (r(2)=0.81). CONCLUSIONS Ischemic MR in this model relates strongly to changes in 3D mitral leaflet attachment geometry. These insights from quantitative 3D echo allowed us to design an effective LV remodeling approach to reduce MR by relieving tethering.


Journal of Clinical Investigation | 1998

Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3.

Wolfgang Steudel; Marielle Scherrer-Crosbie; Kenneth D. Bloch; Jörg Weimann; Paul L. Huang; Rosemary Jones; Michael H. Picard; Warren M. Zapol

Chronic hypoxia induces pulmonary hypertension and right ventricular (RV) hypertrophy. Nitric oxide (NO) has been proposed to modulate the pulmonary vascular response to hypoxia. We investigated the effects of congenital deficiency of endothelial NO synthase (NOS3) on the pulmonary vascular responses to breathing 11% oxygen for 3-6 wk. After 3 wk of hypoxia, RV systolic pressure was greater in NOS3-deficient than in wild-type mice (35+/-2 vs 28+/-1 mmHg, x+/-SE, P < 0.001). Pulmonary artery pressure (PPA) and incremental total pulmonary vascular resistance (RPI) were greater in NOS3-deficient than in wild-type mice (PPA 22+/-1 vs 19+/-1 mmHg, P < 0.05 and RPI 92+/-11 vs 55+/-5 mmHg.min.gram.ml-1, P < 0.05). Morphometry revealed that the proportion of muscularized small pulmonary vessels was almost fourfold greater in NOS3-deficient mice than in wild-type mice. After 6 wk of hypoxia, the increase of RV free wall thickness, measured by transesophageal echocardiography, and of RV weight/body weight ratio were more marked in NOS3-deficient mice than in wild-type mice (RV wall thickness 0.67+/-0.05 vs 0.48+/-0.02 mm, P < 0.01 and RV weight/body weight ratio 2.1+/-0.2 vs 1.6+/-0.1 mg. gram-1, P < 0.05). RV hypertrophy produced by chronic hypoxia was prevented by breathing 20 parts per million NO in both genotypes of mice. These results suggest that congenital NOS3 deficiency enhances hypoxic pulmonary vascular remodeling and hypertension, and RV hypertrophy, and that NO production by NOS3 is vital to counterbalance pulmonary vasoconstriction caused by chronic hypoxic stress.


European Journal of Echocardiography | 2014

Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging

Juan Carlos Plana; Maurizio Galderisi; Ana Barac; Michael S. Ewer; Bonnie Ky; Marielle Scherrer-Crosbie; Javier Ganame; Igal A. Sebag; Luigi P. Badano; Jose Banchs; Daniela Cardinale; Joseph R. Carver; Manuel D. Cerqueira; Jeanne M. DeCara; Thor Edvardsen; Scott D. Flamm; Thomas Force; Brian P. Griffin; Guy Jerusalem; Jennifer E. Liu; Andreia Magalhães; Thomas H. Marwick; Liza Sanchez; Rosa Sicari; Hector R. Villarraga; Patrizio Lancellotti

### A. Definition, classification, and mechanisms of toxicity Cardiac dysfunction resulting from exposure to cancer therapeutics was first recognized in the 1960s, with the widespread introduction of anthracyclines into the oncological therapeutic armamentarium.1 Heart failure (HF) associated with anthracyclines was then recognized as an important side effect. As a result, physicians learned to limit their doses to avoid cardiac dysfunction.2 Several strategies have been used over the past decades to detect it. Two of them evolved over time to be very useful: endomyocardial biopsies and monitoring of left ventricular (LV) ejection fraction (LVEF) by cardiac imaging. Examination of endomyocardial biopsies proved to be the most sensitive and specific parameter for the identification of anthracycline-induced LV dysfunction and became the gold standard in the 1970s. However, the interest in endomyocardial biopsy has diminished over time because of the reduction in the cumulative dosages used to treat malignancies, the invasive nature of the procedure, and the remarkable progress made in non-invasive cardiac imaging. The non-invasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially cardiotoxic cancer treatment.3–5 The timing of LV dysfunction can vary among agents. In the case of anthracyclines, the damage occurs immediately after the exposure;6 for others, the time frame between drug administration and detectable cardiac dysfunction appears to be more variable. Nevertheless, the heart has significant cardiac reserve, and the expression of damage in the form of alterations in systolic or diastolic parameters may not be overt until a substantial amount of cardiac reserve has been exhausted. Thus, cardiac damage may not become apparent until years or even decades after receiving the cardiotoxic treatment. This is particularly applicable to …


Circulation Research | 2004

Cardiomyocyte-Specific Overexpression of Nitric Oxide Synthase 3 Improves Left Ventricular Performance and Reduces Compensatory Hypertrophy After Myocardial Infarction

Stefan Janssens; Peter Pokreisz; Luc Schoonjans; Marijke Pellens; Pieter Vermeersch; Marc Tjwa; Peter Jans; Marielle Scherrer-Crosbie; Michael H. Picard; Zsolt Szelid; Hilde Gillijns; Frans Van de Werf; Desire Collen; Kenneth D. Bloch

Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34 ± 4% versus 36 ± 12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3 ± 0.2 versus 4.6 ± 0.5 mg/g; P < 0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8 ± 2.0 versus 16.6 ± 1.6 μm; P < 0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.


Journal of The American Society of Echocardiography | 2013

Expert Consensus for Multi-Modality Imaging Evaluation of Cardiovascular Complications of Radiotherapy in Adults: A Report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography

Patrizio Lancellotti; Vuyisile T. Nkomo; Luigi P. Badano; Jutta Bergler; Jan Bogaert; Laurent Davin; Bernard Cosyns; Philippe Coucke; Raluca Dulgheru; Thor Edvardsen; Oliver Gaemperli; Maurizio Galderisi; Brian P. Griffin; Paul A. Heidenreich; Koen Nieman; Juan Carlos Plana; Steven Port; Marielle Scherrer-Crosbie; Ronald G. Schwartz; Igal A. Sebag; Jens Uwe Voigt; Samuel Wann; Phillip C. Yang

Cardiac toxicity is one of the most concerning side effects of anti-cancer therapy. The gain in life expectancy obtained with anti-cancer therapy can be compromised by increased morbidity and mortality associated with its cardiac complications. While radiosensitivity of the heart was initially recognized only in the early 1970s, the heart is regarded in the current era as one of the most critical dose-limiting organs in radiotherapy. Several clinical studies have identified adverse clinical consequences of radiation-induced heart disease (RIHD) on the outcome of long-term cancer survivors. A comprehensive review of potential cardiac complications related to radiotherapy is warranted. An evidence-based review of several imaging approaches used to detect, evaluate, and monitor RIHD is discussed. Recommendations for the early identification and monitoring of cardiovascular complications of radiotherapy by cardiac imaging are also proposed.


Circulation Research | 2006

Myostatin Regulates Cardiomyocyte Growth Through Modulation of Akt Signaling

Michael R. Morissette; Stuart A. Cook; ShiYin Foo; Godfrina McKoy; Noboru Ashida; Mikhail Novikov; Marielle Scherrer-Crosbie; Ling Li; Takashi Matsui; Gavin Brooks; Anthony Rosenzweig

Myostatin is a highly conserved, potent negative regulator of skeletal muscle hypertrophy in many species, from rodents to humans, although its mechanisms of action are incompletely understood. Transcript profiling of hearts from a genetic model of cardiac hypertrophy revealed dramatic upregulation of myostatin, not previously recognized to play a role in the heart. Here we show that myostatin abrogates the cardiomyocyte growth response to phenylephrine in vitro through inhibition of p38 and the serine–threonine kinase Akt, a critical determinant of cell size in many species from drosophila to mammals. Evaluation of male myostatin-null mice revealed that their cardiomyocytes and hearts overall were slightly smaller at baseline than littermate controls but exhibited more exuberant growth in response to chronic phenylephrine infusion. The increased cardiac growth in myostatin-null mice corresponded with increased p38 phosphorylation and Akt activation in vivo after phenylephrine treatment. Together, these data demonstrate that myostatin is dynamically regulated in the heart and acts more broadly than previously appreciated to regulate growth of multiple types of striated muscle.


Circulation | 2000

Congenital Deficiency of Nitric Oxide Synthase 2 Protects Against Endotoxin-Induced Myocardial Dysfunction in Mice

Roman Ullrich; Marielle Scherrer-Crosbie; Kenneth D. Bloch; Fumito Ichinose; Hiroshi Nakajima; Michael H. Picard; Warren M. Zapol; Zenaide Quezado

BackgroundSepsis can be complicated by severe myocardial dysfunction and is associated with increased nitric oxide (NO) production by inducible NO synthase (NOS2). To investigate the role of NOS2 in endotoxin-induced myocardial dysfunction in vivo, we studied wild-type and NOS2-deficient mice. Methods and ResultsSerial echocardiographic parameters of myocardial function were measured before and at 4, 7, 16, and 24 hours after an endotoxin challenge. Seven hours after challenge with either endotoxin or saline, systemic and left ventricular pressures were measured, and the first derivative of left ventricular developed pressure (dP/dt), slope of the end-systolic pressure–dimension relationship (SlopeLVESPD), and time constant of isovolumic relaxation (&tgr;) were calculated. Endotoxin challenge in wild-type mice decreased left ventricular fractional shortening, velocity of circumferential shortening, dP/dtmax, SlopeLVESPD, and dP/dtmin and increased time constant &tgr;. Endotoxin-induced myocardial dysfunction was associated with increased ventricular NOS2 gene expression and cGMP concentrations. Seven hours after endotoxin challenge, NOS2-deficient mice had greater fractional shortening, dP/dtmax, and SlopeLVESPD than did endotoxin-challenged wild-type mice. Measures of diastolic function, dP/dtmin and time constant &tgr;, were preserved in endotoxin-challenged NOS2-deficient mice. After endotoxin challenge in wild-type mice, early (3-hour) inhibition of NOS2 with l-N6-(1-iminoethyl)lysine hydrochloride prevented, whereas later (7-hour) inhibition could not reverse, endotoxin-induced myocardial dysfunction. ConclusionsThese results suggest that NOS2 is required for the development of systolic and diastolic dysfunction in murine sepsis.


European Journal of Echocardiography | 2013

Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography

Patrizio Lancellotti; Vuyisile T. Nkomo; Luigi P. Badano; Jutta Bergler; Jan Bogaert; Laurent Davin; Bernard Cosyns; Philippe Coucke; Raluca Dulgheru; Thor Edvardsen; Oliver Gaemperli; Maurizio Galderisi; Brian P. Griffin; Paul A. Heidenreich; Koen Nieman; Juan Carlos Plana; Steven Port; Marielle Scherrer-Crosbie; Ronald G. Schwartz; Igal A. Sebag; Jens-Uwe Voigt; Samuel Wann; Phillip C. Yang

Cardiac toxicity is one of the most concerning side effects of anti-cancer therapy. The gain in life expectancy obtained with anti-cancer therapy can be compromised by increased morbidity and mortality associated with its cardiac complications. While radiosensitivity of the heart was initially recognized only in the early 1970s, the heart is regarded in the current era as one of the most critical dose-limiting organs in radiotherapy. Several clinical studies have identified adverse clinical consequences of radiation-induced heart disease (RIHD) on the outcome of long-term cancer survivors. A comprehensive review of potential cardiac complications related to radiotherapy is warranted. An evidence-based review of several imaging approaches used to detect, evaluate, and monitor RIHD is discussed. Recommendations for the early identification and monitoring of cardiovascular complications of radiotherapy by cardiac imaging are also proposed.

Collaboration


Dive into the Marielle Scherrer-Crosbie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge