Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael L. Kotewicz is active.

Publication


Featured researches published by Michael L. Kotewicz.


Microbiology | 2008

Optical mapping and 454 sequencing of Escherichia coli O157 : H7 isolates linked to the US 2006 spinach-associated outbreak

Michael L. Kotewicz; Mark K. Mammel; J. Eugene LeClerc; Thomas A. Cebula

Optical maps for five representative clinical, food-borne and bovine-derived isolates from the 2006 Escherichia coli O157 : H7 outbreak linked to fresh spinach in the United States showed a common set of 14 distinct chromosomal markers that define the outbreak strain. Partial 454 DNA sequencing was used to characterize the optically mapped chromosomal markers. The markers included insertions, deletions, substitutions and a simple single nucleotide polymorphism creating a BamHI site. The Shiga toxin gene profile of the spinach-associated outbreak isolates (stx1(-) stx2(+) stx2c(+)) correlated with prophage insertions different from those in the prototypical EDL933 and Sakai reference strains (stx1(+) stx2(+) stx2c(-)). The prophage occupying the yehV chromosomal position in the spinach-associated outbreak isolates was similar to the stx1(+) EDL933 cryptic prophage V, but it lacked the stx1 gene. In EDL933, the stx2 genes are within prophage BP933-W at the wrbA chromosomal locus; this locus was unoccupied in the spinach outbreak isolates. Instead, the stx2 genes were found within a chimeric BP933-W-like prophage with a different integrase, inserted at the argW locus in the outbreak isolates. An extra set of Shiga toxin genes, stx2c, was found in the outbreak isolates within a prophage integrated at the sbcB locus. The optical maps of two additional clinical isolates from the outbreak showed a single, different prophage variation in each, suggesting that changes occurred in the source strain during the course of this widespread, multi-state outbreak.


Molecular Phylogenetics and Evolution | 2002

Detection of recombination among Salmonella enterica strains using the incongruence length difference test

Eric W. Brown; Michael L. Kotewicz; Thomas A. Cebula

Particular serovars of Salmonella enterica have emerged as significant foodborne pathogens in humans. At the chromosomal level, discrete regions in the Salmonella genome have been identified that are known to play important roles in the maintenance, survival, and virulence of S. enterica within the host. Interestingly, several of these loci appear to have been acquired by horizontal transfer of DNA among and between bacterial species. The profound importance of recombination in pathogen emergence is just now being realized, perhaps explaining the sudden interest in developing novel and facile ways for detecting putative horizontal transfer events in bacteria. The incongruence length difference (ILD) test offers one such means. ILD uses phylogeny to trace sequences that may have been acquired promiscuously by exchange of DNA during chromosome evolution. We show here that the ILD test readily detects recombinations that have taken place in several housekeeping genes in Salmonella as well as genes composing the type 1 pilin complex (14 min) and the inv-spa invasion gene complex (63 min). Moreover, the ILD test indicated that the mutS gene (64 min), whose product helps protect the bacterial genome from invasion by foreign DNA, appears to have undergone intragenic recombination within S. enterica subspecies I. ILD findings were supported using additional tests known to be independent of the ILD approach (e.g., split decomposition analysis and compatibility of sites). Taken together, these data affirm the application of the ILD test as one approach for identifying recombined sequences in the Salmonella chromosome. Furthermore, horizontally acquired sequences within mutS support a model whereby evolutionarily important recombinants of S. enterica are rescued from strains carrying defective mutS alleles via horizontal transfer.


Antimicrobial Agents and Chemotherapy | 2013

Whole-Genome Sequencing of Gentamicin-Resistant Campylobacter coli Isolated from U.S. Retail Meats Reveals Novel Plasmid-Mediated Aminoglycoside Resistance Genes

Yuansha Chen; Sampa Mukherjee; Maria Hoffmann; Michael L. Kotewicz; Shenia Young; Jason Abbott; Yan Luo; Maureen K. Davidson; Marc W. Allard; Patrick F. McDermott; Shaohua Zhao

ABSTRACT Aminoglycoside resistance in Campylobacter has been routinely monitored in the United States in clinical isolates since 1996 and in retail meats since 2002. Gentamicin resistance first appeared in a single human isolate of Campylobacter coli in 2000 and in a single chicken meat isolate in 2007, after which it increased rapidly to account for 11.3% of human isolates and 12.5% of retail isolates in 2010. Pulsed-field gel electrophoresis analysis indicated that gentamicin-resistant C. coli isolates from retail meat were clonal. We sequenced the genomes of two strains of this clone using a next-generation sequencing technique in order to investigate the genetic basis for the resistance. The gaps of one strain were closed using optical mapping and Sanger sequencing, and this is the first completed genome of C. coli. The two genomes are highly similar to each other. A self-transmissible plasmid carrying multiple antibiotic resistance genes was revealed within both genomes, carrying genes encoding resistance to gentamicin, kanamycin, streptomycin, streptothricin, and tetracycline. Bioinformatics analysis and experimental results showed that gentamicin resistance was due to a phosphotransferase gene, aph(2″)-Ig, not described previously. The phylogenetic relationship of this newly emerged clone to other Campylobacter spp. was determined by whole-genome single nucleotide polymorphisms (SNPs), which showed that it clustered with the other poultry isolates and was separated from isolates from livestock.


Trends in Microbiology | 2003

Genomic variability among enteric pathogens: the case of the mutS-rpoS intergenic region

Michael L. Kotewicz; Eric W. Brown; J. Eugene LeClerc; Thomas A. Cebula

The mutS-rpoS intergenic region of enteric bacteria ranges in size from 88 bp in Yersinia to > 12000 bp in Salmonella. We interpret this expansion as the result of the horizontal transfer of segments of DNA from diverse origins. Both comparative genomic analysis and selective sequencing of a variety of Escherichia coli pathogens have provided additional evidence for reassortment of segments within this region.


Applied and Environmental Microbiology | 2012

Rapid Genomic-Scale Analysis of Escherichia coli O104:H4 by Using High-Resolution Alternative Methods to Next-Generation Sequencing

Scott A. Jackson; Michael L. Kotewicz; Isha R. Patel; David W. Lacher; Jayanthi Gangiredla; Christopher A. Elkins

ABSTRACT Two technologies, involving DNA microarray and optical mapping, were used to quickly assess gene content and genomic architecture of recent emergent Escherichia coli O104:H4 and related strains. In real-time outbreak investigations, these technologies can provide congruent perspectives on strain, serotype, and pathotype relationships. Our data demonstrated clear discrimination between clinically, temporally, and geographically distinct O104:H4 isolates and rapid characterization of strain differences.


Microbiology | 2002

Evolution of multi-gene segments in the mutS-rpoS intergenic region of Salmonella enterica serovar Typhimurium LT2.

Michael L. Kotewicz; Baoguang Li; Dan D. Levy; J. Eugene LeClerc; Andrew W. Shifflet; Thomas A. Cebula

The nucleotide sequence of the 12.6 kb region between the mutS and rpoS genes of Salmonella enterica serovar Typhimurium LT2 (S. typhimurium) was compared to other enteric bacterial mutS-rpoS intergenic regions. The mutS-rpoS region is composed of three distinct segments, designated HK, O and S, as defined by sequence similarities to contiguous ORFs in other bacteria. Inverted chromosomal orientations of each of these segments are found between the mutS and rpoS genes in related ENTEROBACTERIACEAE: The HK segment is distantly related to a cluster of seven ORFs found in Haemophilus influenzae and a cluster of five ORFs found between the mutS and rpoS genes in Escherichia coli K-12. The O segment is related to the mutS-rpoS intergenic region found in E. coli O157:H7 and Shigella dysenteriae type 1. The third segment, S, is common to diverse Salmonella species, but is absent from E. coli. Despite the extensive collinearity and conservation of the overall genetic maps of S. typhimurium and E. coli K-12, the insertions, deletions and inversions in the mutS-rpoS region provide evidence that this region of the chromosome is an active site for horizontal gene transfer and rearrangement.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2013

Genomic paradigms for food-borne enteric pathogen analysis at the USFDA: case studies highlighting method utility, integration and resolution

Christopher A. Elkins; Michael L. Kotewicz; Scott A. Jackson; David W. Lacher; Isha R. Patel

Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and “genomic signature recognition” approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.


BMC Microbiology | 2017

Genome sequencing and comparative genomics of enterohemorrhagic Escherichia coli O145:H25 and O145:H28 reveal distinct evolutionary paths and marked variations in traits associated with virulence & colonization

Sandra C. Lorenz; Narjol Gonzalez-Escalona; Michael L. Kotewicz; Markus Fischer; Julie A. Kase

BackgroundEnterohemorrhagic Escherichia coli (EHEC) O145 are among the top non-O157 serogroups associated with severe human disease worldwide. Two serotypes, O145:H25 and O145:H28 have been isolated from human patients but little information is available regarding the virulence repertoire, origin and evolutionary relatedness of O145:H25. Hence, we sequenced the complete genome of two O145:H25 strains associated with hemolytic uremic syndrome (HUS) and compared the genomes with those of previously sequenced O145:H28 and other EHEC strains.ResultsThe genomes of the two O145:H25 strains were 5.3 Mbp in size; slightly smaller than those of O145:H28 and other EHEC strains. Both strains contained three nearly identical plasmids and several prophages and integrative elements, many of which differed significantly in size, gene content and organization as compared to those present in O145:H28 and other EHECs. Furthermore, notable variations were observed in several fimbrial gene cluster and intimin types possessed by O145:H25 and O145:H28 indicating potential adaptation to distinct areas of host colonization. Comparative genomics further revealed that O145:H25 are genetically more similar to other non-O157 EHEC strains than to O145:H28.ConclusionPhylogenetic analysis accompanied by comparative genomics revealed that O145:H25 and O145:H28 evolved from two separate clonal lineages and that horizontal gene transfer and gene loss played a major role in the divergence of these EHEC serotypes. The data provide further evidence that ruminants might be a possible reservoir for O145:H25 but that they might be impaired in their ability to establish a persistent colonization as compared to other EHEC strains.


Genome Announcements | 2016

Complete Genome Sequences of Four Enterohemolysin-Positive (ehxA) Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains.

Sandra C. Lorenz; Michael L. Kotewicz; Maria Hoffmann; Narjol Gonzalez-Escalona; Markus Fischer; Julie A. Kase

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens associated with human disease. Most disease-associated STEC strains carry the locus of enterocyte effacement (LEE); however, regularly LEE-negative STEC strains are recovered from ill patients. Few reference sequences are available for these isolate types. Here, we report here the complete genome sequences for four LEE-negative STEC strains.


Microbiology | 2007

Optical maps distinguish individual strains of Escherichia coli O157 : H7.

Michael L. Kotewicz; Scott A. Jackson; J. Eugene LeClerc; Thomas A. Cebula

Collaboration


Dive into the Michael L. Kotewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Eugene LeClerc

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Elkins

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Eric W. Brown

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Scott A. Jackson

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

David W. Lacher

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Isha R. Patel

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Julie A. Kase

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Maria Hoffmann

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Mark K. Mammel

Center for Food Safety and Applied Nutrition

View shared research outputs
Researchain Logo
Decentralizing Knowledge