Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael M. Hann is active.

Publication


Featured researches published by Michael M. Hann.


Journal of Chemical Information and Computer Sciences | 2001

Molecular Complexity and Its Impact on the Probability of Finding Leads for Drug Discovery

Michael M. Hann; and Andrew R. Leach; Gavin Harper

Using a simple model of ligand-receptor interactions, the interactions between ligands and receptors of varying complexities are studied and the probabilities of binding calculated. It is observed that as the systems become more complex the chance of observing a useful interaction for a randomly chosen ligand falls dramatically. The implications of this for the design of combinatorial libraries is explored. A large set of drug leads and optimized compounds is profiled using several different properties relevant to molecular recognition. The changes observed for these properties during the drug optimization phase support the hypothesis that less complex molecules are more common starting points for the discovery of drugs. An extreme example of the use of simple molecules for directed screening against thrombin is provided.


Nature | 2010

Type IIA topoisomerase inhibition by a new class of antibacterial agents

Benjamin D. Bax; Pan F. Chan; Drake S. Eggleston; Andrew Fosberry; Daniel Robert Gentry; Fabrice Gorrec; Ilaria Giordano; Michael M. Hann; Alan Joseph Hennessy; Martin Hibbs; Jianzhong Huang; Emma Jones; Jo Jones; Kristin K. Brown; Ceri Lewis; Earl W. May; Martin R. Saunders; Onkar M. P. Singh; Claus Spitzfaden; Carol Shen; Anthony Shillings; Andrew J. Theobald; Alexandre Wohlkonig; Neil David Pearson; Michael N. Gwynn

Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 Å crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor ‘bridges’ the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.


MedChemComm | 2011

Molecular obesity, potency and other addictions in drug discovery

Michael M. Hann

Despite the increase in global biology and chemistry knowledge the discovery of effective and safe new drugs seems to become harder rather than easier. Some of this challenge is due to increasing demands for safety and novelty, but some of the risk involved in this should be controllable if we had more effectively learnt from our failures. This perspective reflects on some of the learnings of recent years in relation to the causes of attrition. The term Molecular Obesity is introduced to describe our tendency to build potency into molecules by the inappropriate use of lipophilicity which leads to the premature demise of drug candidates.


Current Opinion in Chemical Biology | 2011

Molecular complexity and fragment-based drug discovery: ten years on

Andrew R. Leach; Michael M. Hann

We review the concept of molecular complexity in the context of the very simple model of molecular interactions that we introduced over ten years ago. A summary is presented of efforts to validate this simple model using screening data. The relationship between the complexity model and the problem of sampling chemical space is discussed, together with the relevance of these theoretical concepts to fragment-based drug discovery.


Journal of Medicinal Chemistry | 2016

Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia

György M. Keserű; Daniel A. Erlanson; György G. Ferenczy; Michael M. Hann; Christopher W. Murray; Stephen D. Pickett

Fragment-based drug discovery (FBDD) is well suited for discovering both drug leads and chemical probes of protein function; it can cover broad swaths of chemical space and allows the use of creative chemistry. FBDD is widely implemented for lead discovery in industry but is sometimes used less systematically in academia. Design principles and implementation approaches for fragment libraries are continually evolving, and the lack of up-to-date guidance may prevent more effective application of FBDD in academia. This Perspective explores many of the theoretical, practical, and strategic considerations that occur within FBDD programs, including the optimal size, complexity, physicochemical profile, and shape profile of fragments in FBDD libraries, as well as compound storage, evaluation, and screening technologies. This compilation of industry experience in FBDD will hopefully be useful for those pursuing FBDD in academia.


Biochimica et Biophysica Acta | 2013

Unlocking the secrets of the gatekeeper: methods for stabilizing and crystallizing GPCRs.

Nicolas Bertheleme; Pil Seok Chae; Shweta Singh; Danuta E. Mossakowska; Michael M. Hann; Kathrine J. Smith; Julia A. Hubbard; Simon J. Dowell; Bernadette Byrne

G-protein coupled receptors (GPCRs) are integral membrane cell surface receptors with key roles in mediating the cellular responses to a wide range of biologically relevant molecules including hormones, neurotransmitters and importantly the majority of currently available drugs. The first high-resolution, X-ray crystallographic structure of a GPCR, that of rhodopsin, was obtained in 2000. It took a further seven years for the next structure, that of the β2 adrenergic receptor. Remarkably, at the time of writing, there have been an astonishing 18 further independent high-resolution GPCR structures published in the last five years (overall total of 68 structures in different conformations or bound to different ligands). Of particular note is the recent structure of the β2 adrenergic receptor in complex with its cognate heterotrimeric G-protein revealing for the first time molecular details of the interaction between a GPCR and the complete G-protein. Together these structures have provided unprecedented detail into the mechanism of action of these incredibly important proteins. This review describes several key methodological advances that have made such extraordinarily fast progress possible.


Journal of Biomolecular Screening | 2016

Direct Measurement of Intracellular Compound Concentration by RapidFire Mass Spectrometry Offers Insights into Cell Permeability

Laurie J. Gordon; Morven Allen; Per Artursson; Michael M. Hann; Bill Leavens; André Mateus; Simon A. Readshaw; Klara Valko; Gareth Wayne; Andrew West

One of the key challenges facing early stage drug discovery is understanding the commonly observed difference between the activity of compounds in biochemical assays and cellular assays. Traditionally, indirect or estimated cell permeability measurements such as estimations from logP or artificial membrane permeability are used to explain the differences. The missing link is a direct measurement of intracellular compound concentration in whole cells. This can, in some circumstances, be estimated from the cellular activity, but this may also be problematic if cellular activity is weak or absent. Advances in sensitivity and throughput of analytical techniques have enabled us to develop a high-throughput assay for the measurement of intracellular compound concentration for routine use to support lead optimization. The assay uses a RapidFire-MS based readout of compound concentration in HeLa cells following incubation of cells with test compound. The initial assay validation was performed by ultra-high performance liquid chromatography tandem mass spectrometry, and the assay was subsequently transferred to RapidFire tandem mass spectrometry. Further miniaturization and optimization were performed to streamline the process, increase sample throughput, and reduce cycle time. This optimization has delivered a semi-automated platform with the potential of production scale compound profiling up to 100 compounds per day.


Journal of Medicinal Chemistry | 2017

Modulators of 14-3-3 Protein-Protein Interactions

Loes M. Stevers; Eline Sijbesma; Maurizio Botta; Carol MacKintosh; Tomas Obsil; Isabelle Landrieu; Ylenia Cau; Andrew J. Wilson; Anna Karawajczyk; Jan Eickhoff; Jeremy Davis; Michael M. Hann; GGavin O'Mahony; Richard G. Doveston; Luc Brunsveld; Christian Ottmann

Direct interactions between proteins are essential for the regulation of their functions in biological pathways. Targeting the complex network of protein–protein interactions (PPIs) has now been widely recognized as an attractive means to therapeutically intervene in disease states. Even though this is a challenging endeavor and PPIs have long been regarded as “undruggable” targets, the last two decades have seen an increasing number of successful examples of PPI modulators, resulting in growing interest in this field. PPI modulation requires novel approaches and the integrated efforts of multiple disciplines to be a fruitful strategy. This perspective focuses on the hub-protein 14-3-3, which has several hundred identified protein interaction partners, and is therefore involved in a wide range of cellular processes and diseases. Here, we aim to provide an integrated overview of the approaches explored for the modulation of 14-3-3 PPIs and review the examples resulting from these efforts in both inhibiting and stabilizing specific 14-3-3 protein complexes by small molecules, peptide mimetics, and natural products.


Methods | 2014

Intracellular drug concentration and disposition--the missing link?

Michael M. Hann; Graham L. Simpson

Improved understanding of the concentration of a potential drug molecule at the site of action in physiologically relevant cells or tissues has emerged as a key challenge in the early stages of drug discovery. Improved ability to carry out such studies with label-free methodology has the potential to improve understanding of drug uptake and trafficking and thus contribute to the reduction of rates of attrition in drug discovery.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery

André Mateus; Laurie J. Gordon; Gareth Wayne; Helena Almqvist; Hanna Axelsson; Brinton Seashore-Ludlow; Andrea Treyer; Pär Matsson; Thomas Lundbäck; Andrew West; Michael M. Hann; Per Artursson

Significance Exposure at the site of action has been identified as one of the three most important factors for success in drug discovery and the design of chemical probes. Modern drug discovery programs have, to a great extent, shifted to intracellular targets, but methods to determine intracellular drug concentrations have been lacking. Here, we use a methodology for predicting intracellular exposure of small-molecule drugs to understand their potency toward intracellular targets. We show that our approach is generally applicable to multiple targets, cell types, and therapeutic areas. We expect that routine measurements of intracellular drug concentration will contribute to reducing the high attrition observed in drug discovery and the design of both better chemical probes and medicines. Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery.

Collaboration


Dive into the Michael M. Hann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge