Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Niezgoda is active.

Publication


Featured researches published by Michael Niezgoda.


Emerging Infectious Diseases | 2004

Nipah virus encephalitis reemergence, Bangladesh

Vincent P. Hsu; Mohammed Jahangir Hossain; Umesh D. Parashar; Mohammed Monsur Ali; Thomas G. Ksiazek; Ivan V. Kuzmin; Michael Niezgoda; Charles E. Rupprecht; Joseph S. Bresee; Robert F. Breiman

Two Nipah virus encephalitis outbreaks in Bangladesh may be associated with person-to-person transmission.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Bats are a major natural reservoir for hepaciviruses and pegiviruses

Phenix-Lan Quan; Cadhla Firth; Juliette M. Conte; Simon H. Williams; Carlos Zambrana-Torrelio; Simon J. Anthony; James A. Ellison; Amy T. Gilbert; Ivan V. Kuzmin; Michael Niezgoda; Modupe Osinubi; Sergio Recuenco; Wanda Markotter; Robert F. Breiman; Lems Kalemba; Jean Malekani; Kim A. Lindblade; Melinda K. Rostal; Rafael Ojeda-Flores; Gerardo Suzán; Lora B. Davis; Dianna M. Blau; Albert B. Ogunkoya; Danilo A. Alvarez Castillo; David Moran; Sali Ngam; Dudu Akaibe; Bernard Agwanda; Thomas Briese; Jonathan H. Epstein

Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.


Emerging Infectious Diseases | 2012

Evaluation of a direct, rapid immunohistochemical test for rabies diagnosis.

Tiziana Lembo; Michael Niezgoda; Andres Velasco-Villa; Sarah Cleaveland; Eblate Ernest; Charles E. Rupprecht

A direct rapid immunohistochemical test (dRIT) was evaluated under field and laboratory conditions to detect rabies virus antigen in frozen and glycerol-preserved field brain samples from northwestern Tanzania. Compared to the direct fluorescent antibody test, the traditional standard in rabies diagnosis, the dRIT was 100% sensitive and specific.


PLOS Neglected Tropical Diseases | 2009

Oral rabies vaccination in North America: opportunities, complexities, and challenges.

Dennis Slate; Timothy P. Algeo; Kathleen Nelson; Richard B. Chipman; Dennis Donovan; Jesse D. Blanton; Michael Niezgoda; Charles E. Rupprecht

Steps to facilitate inter-jurisdictional collaboration nationally and continentally have been critical for implementing and conducting coordinated wildlife rabies management programs that rely heavily on oral rabies vaccination (ORV). Formation of a national rabies management team has been pivotal for coordinated ORV programs in the United States of America. The signing of the North American Rabies Management Plan extended a collaborative framework for coordination of surveillance, control, and research in border areas among Canada, Mexico, and the US. Advances in enhanced surveillance have facilitated sampling of greater scope and intensity near ORV zones for improved rabies management decision-making in real time. The value of enhanced surveillance as a complement to public health surveillance was best illustrated in Ohio during 2007, where 19 rabies cases were detected that were critical for the formulation of focused contingency actions for controlling rabies in this strategically key area. Diverse complexities and challenges are commonplace when applying ORV to control rabies in wild meso-carnivores. Nevertheless, intervention has resulted in notable successes, including the elimination of an arctic fox (Vulpes lagopus) rabies virus variant in most of southern Ontario, Canada, with ancillary benefits of elimination extending into Quebec and the northeastern US. Progress continues with ORV toward preventing the spread and working toward elimination of a unique variant of gray fox (Urocyon cinereoargenteus) rabies in west central Texas. Elimination of rabies in coyotes (Canis latrans) through ORV contributed to the US being declared free of canine rabies in 2007. Raccoon (Procyon lotor) rabies control continues to present the greatest challenges among meso-carnivore rabies reservoirs, yet to date intervention has prevented this variant from gaining a broad geographic foothold beyond ORV zones designed to prevent its spread from the eastern US. Progress continues toward the development and testing of new bait-vaccine combinations that increase the chance for improved delivery and performance in the diverse meso-carnivore rabies reservoir complex in the US.


Virus Research | 2010

Shimoni bat virus, a new representative of the Lyssavirus genus.

Ivan V. Kuzmin; Anne E. Mayer; Michael Niezgoda; Wanda Markotter; Bernard Agwanda; Robert F. Breiman; Charles E. Rupprecht

During 2009, 616 bats representing at least 22 species were collected from 10 locations throughout Kenya. A new lyssavirus, named Shimoni bat virus (SHIBV), was isolated from the brain of a dead Commersons leaf-nosed bat (Hipposideros commersoni), found in a cave in the coastal region of Kenya. Genetic distances and phylogenetic reconstructions, implemented for each gene and for the concatenated alignment of all five structural genes (N, P, M, G and L), demonstrated that SHIBV cannot be identified with any of the existing species, but rather should be considered an independent species within phylogroup II of the Lyssavirus genus, most similar to Lagos bat virus (LBV). Antigenic reaction patterns with anti-nucleocapsid monoclonal antibodies corroborated these distinctions. In addition, new data on the diversity of LBV suggests that this species may be subdivided quantitatively into three separate genotypes. However, the identity values alone are not considered sufficient criteria for demarcation of new species within LBV.


Emerging Infectious Diseases | 2002

Antibodies to Nipah-Like Virus in Bats (Pteropus lylei), Cambodia

James G. Olson; Charles E. Rupprecht; Pierre E. Rollin; Ung Sam An; Michael Niezgoda; Travis Clemins; Joe Walston; Thomas G. Ksiazek

Serum specimens from fruit bats were obtained at restaurants in Cambodia. We detected antibodies cross-reactive to Nipah virus by enzyme immunoassay in 11 (11.5%) of 96 Lyle’s flying foxes (Pteropus lylei). Our study suggests that viruses closely related to Nipah or Hendra viruses are more widespread in Southeast Asia than previously documented.


Journal of Virology | 2005

Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants

Alexander Berthold Hendrik Bakker; Wilfred E. Marissen; R. Arjen Kramer; Amy B. Rice; William C. Weldon; Michael Niezgoda; Cathleen A. Hanlon; Sandra Thijsse; Harold H. J. Backus; John de Kruif; Bernhard Dietzschold; Charles E. Rupprecht; Jaap Goudsmit

ABSTRACT The need to replace rabies immune globulin (RIG) as an essential component of rabies postexposure prophylaxis is widely acknowledged. We set out to discover a unique combination of human monoclonal antibodies (MAbs) able to replace RIG. Stringent criteria concerning neutralizing potency, affinity, breadth of neutralization, and coverage of natural rabies virus (RV) isolates and in vitro escape mutants were set for each individual antibody, and the complementarities of the two MAbs were defined at the onset. First, we identified and characterized one human MAb (CR57) with high in vitro and in vivo neutralizing potency and a broad neutralization spectrum. The linear antibody binding site was mapped on the RV glycoprotein as antigenic site I by characterizing CR57 escape mutants. Secondly, we selected using phage display a complementing antibody (CR4098) that recognized a distinct, nonoverlapping epitope (antigenic site III), showed similar neutralizing potency and breadth as CR57, and neutralized CR57 escape mutants. Reciprocally, CR57 neutralized RV variants escaping CR4098. Analysis of glycoprotein sequences of natural RV isolates revealed that the majority of strains contain both intact epitopes, and the few remaining strains contain at least one of the two. In vitro exposure of RV to the combination of CR57 and CR4098 yielded no escape mutants. In conclusion, a novel combination of human MAbs was discovered suitable to replace RIG.


Emerging Infectious Diseases | 2009

Detection of Novel SARS-like and Other Coronaviruses in Bats from Kenya

Suxiang Tong; Christina Conrardy; Susan Ruone; Ivan V. Kuzmin; Xiling Guo; Ying Tao; Michael Niezgoda; Lia M. Haynes; Bernard Agwanda; Robert F. Breiman; Larry J. Anderson; Charles E. Rupprecht

Diverse coronaviruses have been identified in bats from several continents but not from Africa. We identified group 1 and 2 coronaviruses in bats in Kenya, including SARS-related coronaviruses. The sequence diversity suggests that bats are well-established reservoirs for and likely sources of coronaviruses for many species, including humans.


Journal of Clinical Microbiology | 2008

Lagos Bat Virus in Kenya

Ivan V. Kuzmin; Michael Niezgoda; Richard Franka; Bernard Agwanda; Wanda Markotter; Janet C. Beagley; Olga Yu Urazova; Robert F. Breiman; Charles E. Rupprecht

ABSTRACT During lyssavirus surveillance, 1,221 bats of at least 30 species were collected from 25 locations in Kenya. One isolate of Lagos bat virus (LBV) was obtained from a dead Eidolon helvum fruit bat. The virus was most similar phylogenetically to LBV isolates from Senegal (1985) and from France (imported from Togo or Egypt; 1999), sharing with these viruses 100% nucleoprotein identity and 99.8 to 100% glycoprotein identity. This genome conservancy across space and time suggests that LBV is well adapted to its natural host species and that populations of reservoir hosts in eastern and western Africa have sufficient interactions to share pathogens. High virus concentrations, in addition to being detected in the brain, were detected in the salivary glands and tongue and in an oral swab, suggesting that LBV is transmitted in the saliva. In other extraneural organs, the virus was generally associated with innervations and ganglia. The presence of infectious virus in the reproductive tract and in a vaginal swab implies an alternative opportunity for transmission. The isolate was pathogenic for laboratory mice by the intracerebral and intramuscular routes. Serologic screening demonstrated the presence of LBV-neutralizing antibodies in E. helvum and Rousettus aegyptiacus fruit bats. In different colonies the seroprevalence ranged from 40 to 67% and 29 to 46% for E. helvum and R. aegyptiacus, respectively. Nested reverse transcription-PCR did not reveal the presence of viral RNA in oral swabs of bats in the absence of brain infection. Several large bat roosts were identified in areas of dense human populations, raising public health concerns for the potential of lyssavirus infection.


Journal of Wildlife Diseases | 1998

FIRST NORTH AMERICAN FIELD RELEASE OF A VACCINIA-RABIES GLYCOPROTEIN RECOMBINANT VIRUS

Cathleen A. Hanlon; Michael Niezgoda; Amir N. Hamir; Carolin Schumacher; Hilary Koprowski; Charles E. Rupprecht

Following nearly 10 yr of extensive laboratory evaluation, a vaccinia-rabies glycoprotein (V-RG) vaccine was the first recombinant virus to undergo limited North American field release on 20 August 1990. The free-ranging raccoon population on Parramore Island (Virginia, USA) was exposed to a high density (10 baits/ha) of vaccine-laden baits distributed on a 300 ha vaccination area. An annual total of 887 raccoons were live-trapped for sedation, physical examination and blood collection for rabies antibody determination; there was no evidence of adverse effects or lesions due to the vaccine. Age and sex distributions, mean body weights, and live-capture histories of raccoons from the vaccination and non-baited control areas were compared. There were no statistically significant differences in survivorship between the baited and non-baited areas, nor between rabies antibody-positive and antibody-negative raccoons from the vaccination area. There was no trend in field mortality that suggested an association with either tetracycline or sulfadimethoxine, used as biomakers, or with vaccine contact determined by antibody status. No gross or histopathologic lesions due to the vaccine were demonstrated among a subsample of live-trapped raccoons collected for gross necropsy, biomarker analysis, histopathologic examination, and V-RG virus isolation attempts. Recovery of V-RG virus was limited to the tonsils of two biomarker-positive, clinically healthy raccoons collected from the vaccination area for postmortem examination on days 2 and 4 following bait distribution. These data reinforce the extensive body of safety data on the V-RG virus and extend it to include field evaluation where vaccine is offered free-choice in abundance, in baits designed to attract free-ranging raccoons, in a relatively simple ecosystem.

Collaboration


Dive into the Michael Niezgoda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan V. Kuzmin

Global Alliance for Rabies Control

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Franka

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Lillian A. Orciari

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela A. Yager

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jesse D. Blanton

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Sergio Recuenco

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge