Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Ritt is active.

Publication


Featured researches published by Michael Ritt.


Lab on a Chip | 2013

Highly sensitive fluorescent protein FRET detection using optofluidic lasers

Qiushu Chen; Xingwang Zhang; Yuze Sun; Michael Ritt; Sivaraj Sivaramakrishnan; Xudong Fan

We achieved optofluidic protein lasing using genetically encoded fluorescent protein FRET pairs linked by length-tunable peptides. Up to 25-fold reduction in the donor laser emission was observed when the donor and the acceptor were brought to close proximity, as compared to only 17% reduction in the donor emission using the conventional FRET detection. Our work opens a door to a broad range of applications in studying protein-protein interactions and protein-drug interactions.


Journal of Biological Chemistry | 2013

Detection of G-protein selective G-protein Coupled Receptor (GPCR) conformations in live cells

Rabia U. Malik; Michael Ritt; Brian T. DeVree; Richard R. Neubig; Roger K. Sunahara; Sivaraj Sivaramakrishnan

Background: G protein-coupled receptors (GPCRs) adopt multiple structural conformations whose functional significance remains unclear. Results: Novel FRET-based sensors were developed to detect the stabilization of G protein-specific GPCR conformations in live cells. Conclusion: FRET measurements delineate distinct structural mechanisms for three β2-adrenergic receptor ligands. Significance: This study extensively validates a new technology that links GPCR conformation and function in live cells. Although several recent studies have reported that GPCRs adopt multiple conformations, it remains unclear how subtle conformational changes are translated into divergent downstream responses. In this study, we report on a novel class of FRET-based sensors that can detect the ligand/mutagenic stabilization of GPCR conformations that promote interactions with G proteins in live cells. These sensors rely on the well characterized interaction between a GPCR and the C terminus of a Gα subunit. We use these sensors to elucidate the influence of the highly conserved (E/D)RY motif on GPCR conformation. Specifically, Glu/Asp but not Arg mutants of the (E/D)RY motif are known to enhance basal GPCR signaling. Hence, it is unclear whether ionic interactions formed by the (E/D)RY motif (ionic lock) are necessary to stabilize basal GPCR states. We find that mutagenesis of the β2-AR (E/D)RY ionic lock enhances interaction with Gs. However, only Glu/Asp but not Arg mutants increase G protein activation. In contrast, mutagenesis of the opsin (E/D)RY ionic lock does not alter its interaction with transducin. Instead, opsin-specific ionic interactions centered on residue Lys-296 are both necessary and sufficient to promote interactions with transducin. Effective suppression of β2-AR basal activity by inverse agonist ICI 118,551 requires ionic interactions formed by the (E/D)RY motif. In contrast, the inverse agonist metoprolol suppresses interactions with Gs and promotes Gi binding, with concomitant pertussis toxin-sensitive inhibition of adenylyl cyclase activity. Taken together, these studies validate the use of the new FRET sensors while revealing distinct structural mechanisms for ligand-dependent GPCR function.


Lab on a Chip | 2014

Optofluidic lasers with a single molecular layer of gain

Qiushu Chen; Michael Ritt; Sivaraj Sivaramakrishnan; Yuze Sun; Xudong Fan

We achieve optofluidic lasers with a single molecular layer of gain, in which green fluorescent protein, dye-labeled bovine serum albumin, and dye-labeled DNA, are used as the gain medium and attached to the surface of a ring resonator via surface immobilization biochemical methods. It is estimated that the surface density of the gain molecules is on the order of 10(12) cm(-2), sufficient for lasing under pulsed optical excitation. It is further shown that the optofluidic laser can be tuned by energy transfer mechanisms through biomolecular interactions. This work not only opens a door to novel photonic devices that can be controlled at the level of a single molecular layer but also provides a promising sensing platform to analyze biochemical processes at the solid-liquid interface.


Cancer Research | 2014

Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity

Gregory J. Baker; Peter Chockley; Viveka Nand Yadav; Robert Doherty; Michael Ritt; Sivaraj Sivaramakrishnan; Maria G. Castro; Pedro R. Lowenstein

Natural killer (NK) cells safeguard against early tumor formation by destroying transformed target cells in a process referred to as NK immune surveillance. However, the immune escape mechanisms used by malignant brain tumors to subvert this innate type of immune surveillance remain unclear. Here we show that malignant glioma cells suppress NK immune surveillance by overexpressing the β-galactoside-binding lectin galectin-1. Conversely, galectin-1-deficient glioma cells could be eradicated by host NK cells before the initiation of an antitumor T-cell response. In vitro experiments demonstrated that galectin-1-deficient GL26-Cit glioma cells are ∼3-fold more sensitive to NK-mediated tumor lysis than galectin-1-expressing cells. Our findings suggest that galectin-1 suppression in human glioma could improve patient survival by restoring NK immune surveillance that can eradicate glioma cells. Cancer Res; 74(18); 5079-90. ©2014 AACR.


Journal of Biological Chemistry | 2013

Visualizing and Manipulating Focal Adhesion Kinase Regulation in Live Cells

Michael Ritt; Jun-Lin Guan; Sivaraj Sivaramakrishnan

Background: Focal adhesion kinase (FAK) activation is essential for cell migration. Results: A toolbox of FRET sensors demonstrate that a key regulatory interaction in FAK is sensitive to pH. Conclusion: FAK is a pH sensor with maximal activity at cancer cell pH. Significance: This is a broadly applicable approach to studying the effects of modulating individual protein-protein interactions in live cells. Focal Adhesion Kinase (FAK) is essential for cell migration and plays an important role in tumor metastasis. However, the complex intermolecular and intramolecular interactions that regulate FAK activity at the focal adhesion remain unresolved. We have engineered a toolbox of FRET sensors that retain all of the individual FAK domains but modulate a key intramolecular regulatory interaction between the band 4.1/ezrin/radixin/moesin (FERM) and kinase domains of FAK. We demonstrate systematic control and quantitative measurement of the FERM-kinase interaction at focal adhesions, which in turn allows us to control cell migration. Using these sensors, we find that Tyr-397 phosphorylation, rather than kinase activity of FAK, is the key determinant of cell migration. Our sensors directly demonstrate, for the first time, a pH-dependent change in a protein-protein interaction at a macromolecular structure in live cells. The FERM-kinase interaction at focal adhesions is enhanced at acidic pH, with a concomitant decrease in Tyr-397 phosphorylation, providing a potential mechanism for enhanced migration of cancer cells.


Journal of Biological Chemistry | 2014

Conserved Modular Domains Team up to Latch-open Active Protein Kinase Cα

Carter J. Swanson; Michael Ritt; William S.-Y. Wang; Michael J. Lang; Arvind Narayan; John J. G. Tesmer; Margaret V. Westfall; Sivaraj Sivaramakrishnan

Background: Protein kinase C (PKC) is a nodal regulator of cell signaling. Results: Multiple interactions between conserved regulatory domains in PKC synergistically stabilize a nanomolar affinity homodimer critical for cellular function. Conclusion: Homodimerization regulates the equilibrium between the auto-inhibited and active states of PKCα. Significance: Multiplexed interactions between modular domains dictate PKC function. Signaling proteins comprised of modular domains have evolved along with multicellularity as a method to facilitate increasing intracellular bandwidth. The effects of intramolecular interactions between modular domains within the context of native proteins have been largely unexplored. Here we examine intra- and intermolecular interactions in the multidomain signaling protein, protein kinase Cα (PKCα). We identify three interactions between two activated PKC molecules that synergistically stabilize a nanomolar affinity homodimer. Disruption of the homodimer results in a loss of PKC-mediated ERK1/2 phosphorylation, whereas disruption of the auto-inhibited state promotes the homodimer and prolongs PKC membrane localization. These observations support a novel regulatory mechanism wherein homodimerization dictates the equilibrium between the auto-inhibited and active states of PKC by sequestering auto-inhibitory interactions. Our findings underscore the physiological importance of context-dependent modular domain interactions in cell signaling.


Journal of Biological Chemistry | 2017

The Role of Regulatory Domains in Maintaining Autoinhibition in the Multidomain Kinase PKCα

Ruth F. Sommese; Michael Ritt; Carter J. Swanson; Sivaraj Sivaramakrishnan

Resolving the conformational dynamics of large multidomain proteins has proven to be a significant challenge. Here we use a variety of techniques to dissect the roles of individual protein kinase Cα (PKCα) regulatory domains in maintaining catalytic autoinhibition. We find that whereas the pseudosubstrate domain is necessary for autoinhibition it is not sufficient. Instead, each regulatory domain (C1a, C1b, and C2) appears to strengthen the pseudosubstrate-catalytic domain interaction in a nucleotide-dependent manner. The pseudosubstrate and C1a domains, however, are minimally essential for maintaining the inactivated state. Furthermore, disrupting known interactions between the C1a and other regulatory domains releases the autoinhibited interaction and increases basal activity. Modulating this interaction between the catalytic and regulatory domains reveals a direct correlation between autoinhibition and membrane translocation following PKC activation.


Scientific Reports | 2017

ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells

Rabia U. Malik; Matthew Dysthe; Michael Ritt; Roger K. Sunahara; Sivaraj Sivaramakrishnan

FRET and BRET approaches are well established for detecting ligand induced GPCR-G protein interactions in cells. Currently, FRET/BRET assays rely on co-expression of GPCR and G protein, and hence depend on the stoichiometry and expression levels of the donor and acceptor probes. On the other hand, GPCR-G protein fusions have been used extensively to understand the selectivity of GPCR signaling pathways. However, the signaling properties of fusion proteins are not consistent across GPCRs. In this study, we describe and characterize novel sensors based on the Systematic Protein Affinity Strength Modulation (SPASM) technique. Sensors consist of a GPCR and G protein tethered by an ER/K linker flanked by FRET probes. SPASM sensors are tested for the β2-, α1-, and α2- adrenergic receptors, and adenosine type 1 receptor (A1R), tethered to Gαs-XL, Gαi2, or Gαq subunits. Agonist stimulation of β2-AR and α2-AR increases FRET signal comparable to co-expressed FRET/BRET sensors. SPASM sensors also retain signaling through the endogenous G protein milieu. Importantly, ER/K linker length systematically tunes the GPCR-G protein interaction, with consequent modulation of second messenger signaling for cognate interactions. SPASM GPCR sensors serve the dual purpose of detecting agonist-induced changes in GPCR-G protein interactions, and linking these changes to downstream signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Priming GPCR signaling through the synergistic effect of two G proteins

Tejas M. Gupte; Rabia U. Malik; Ruth F. Sommese; Michael Ritt; Sivaraj Sivaramakrishnan

Significance In this study, we uncover a G-protein–coupled receptor (GPCR) priming mechanism that results from the synergistic effects of two distinct G proteins. Although recent structural and spectroscopic studies of GPCR structure reveal a broad receptor conformational landscape, G-protein activation and downstream signaling are still viewed through the lens of individual ternary complexes between ligand, receptor, and individual effectors. Instead, our findings suggest positive interference between otherwise-disparate signaling pathways that can impact both the potency of GPCR ligands and their cell type-specific responses. Although individual G-protein–coupled receptors (GPCRs) are known to activate one or more G proteins, the GPCR–G-protein interaction is viewed as a bimolecular event involving the formation of a ternary ligand–GPCR–G-protein complex. Here, we present evidence that individual GPCR–G-protein interactions can reinforce each other to enhance signaling through canonical downstream second messengers, a phenomenon we term “GPCR priming.” Specifically, we find that the presence of noncognate Gq protein enhances cAMP stimulated by two Gs-coupled receptors, β2-adrenergic receptor (β2-AR) and D1 dopamine receptor (D1-R). Reciprocally, Gs enhances IP1 through vasopressin receptor (V1A-R) but not α1 adrenergic receptor (α1-AR), suggesting that GPCR priming is a receptor-specific phenomenon. The C terminus of either the Gαs or Gαq subunit is sufficient to enhance Gα subunit activation and cAMP levels. Interaction of Gαs or Gαq C termini with the GPCR increases signaling potency, suggesting an altered GPCR conformation as the underlying basis for GPCR priming. We propose three parallel mechanisms involving (i) sequential G-protein interactions at the cognate site, (ii) G-protein interactions at distinct allosteric and cognate sites on the GPCR, and (iii) asymmetric GPCR dimers. GPCR priming suggests another layer of regulation in the classic GPCR ternary-complex model, with broad implications for the multiplicity inherent in signaling networks.


PLOS ONE | 2016

Calcium stimulates self-assembly of protein kinase C α in vitro

Carter J. Swanson; Ruth F. Sommese; Karl J. Petersen; Michael Ritt; Joshua Karslake; David D. Thomas; Sivaraj Sivaramakrishnan

Protein kinase C α (PKCα) is a nodal regulator in several intracellular signaling networks. PKCα is composed of modular domains that interact with each other to dynamically regulate spatial-temporal function. We find that PKCα specifically, rapidly and reversibly self-assembles in the presence of calcium in vitro. This phenomenon is dependent on, and can be modulated by an intramolecular interaction between the C1a and C2 protein domains of PKCα. Next, we monitor self-assembly of PKC—mCitrine fusion proteins using time-resolved and steady-state homoFRET. HomoFRET between full-length PKCα molecules is observed when in solution with both calcium and liposomes containing either diacylglycerol (DAG) or phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Surprisingly, the C2 domain is sufficient to cluster on liposomes containing PI(4,5)P2, indicating the C1a domain is not required for self-assembly in this context. We conclude that three distinct clustered states of PKCα can be formed depending on what combination of cofactors are bound, but Ca2+ is minimally required and sufficient for clustering.

Collaboration


Dive into the Michael Ritt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiushu Chen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge