Michael T. Rose
Aberystwyth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael T. Rose.
Journal of Dairy Research | 2002
Michael T. Rose; Hisashi Aso; Shinichi Yonekura; Tokushi Komatsu; Akihiko Hagino; Kyouhei Ozutsumi; Yoshiaki Obara
The aim of the study was to establish in vitro a bovine mammary epithelial cell (MEC) clone, able to respond to mitogenic growth factors and to lactogenic hormones. Mammary tissue from a 200-d pregnant Holstein cow was used as a source of MEC, from which a clone was established through a process of limiting dilution. When plated on plastic, the cells assumed a monolayer, cobblestone, epithelial-like morphology, with close contact between cells. Inclusion of IGF-1 and EGF in the media significantly increased the number of cells 5 d after plating. All cells stained strongly for cytokeratin and moderately for vimentin at young and old passage stages, indicating the epithelial nature of this cell clone. When the cells were plated at a high density on a thin layer of a commercial extracellular matrix preparation (Matrigel), lobular, alveoli-like structures developed within approximately 5 d, with a clearly visible lumen. When cells were plated onto Matrigel in differentiation media (containing lactogenic hormones), detectable quantities of alpha-casein were present in the media and particularly on the lumen side of the structures. Omission of one of the lactogenic hormones (insulin, prolactin or hydrocortisone) reduced alpha-casein release to the limit of detection of the assay used. Lactoferrin was also produced when the cells were plated on Matrigel, again principally on the lumen side of the lobules, though this was independent of the lactogenic hormones. By passage 40, the cells had senesced, and it was not possible to induce alpha-casein or lactoferrin production. This study notes the establishment of a functional bovine mammary epithelial cell clone, which is responsive to mitogenic and lactogenic hormones and an extracellular matrix.
Histochemistry and Cell Biology | 2000
Shinichiro Hayashi; Hisashi Aso; Kouichi Watanabe; Hidetoshi Nara; Michael T. Rose; Shyuichi Ohwada; Takahiro Yamaguchi
Various cytokines are thought to play a role in muscle regeneration, however, the interaction and mechanisms of action of these cytokines remains largely unknown. In this study, we investigated the role of HGF, IGF-I, and IGF-II during myogenesis using the regeneration model of skeletal muscle as well as myoblast culture. RT-PCR analysis revealed that HGF and IGF-I expressions were markedly upregulated, in regenerating muscle. In contrast, there was no significant difference in IGF-II expression between normal and regenerating muscle. Immunohistochemical analysis demonstrated that HGF was expressed mostly by myocytes during the early stages of muscle regeneration. Additionally, HGF inhibited the formation of myotubes by myoblasts, but promoted cellular proliferation. Otherwise, IGF-I and IGF-II were expressed by myocytes through the early to middle stages of muscle regeneration. The addition of HGF to myoblast growing in vitro significantly increased the number of cells. These findings indicate that these three cytokines have pleiotropic effects in regenerating skeletal muscle.
Endocrinology | 2010
Hitoshi Watanabe; Daisuke Akasaka; Hideki Ogasawara; Kan Sato; Masato Miyake; Kazuki Saito; Yu Takahashi; Takashi Kanaya; Ikuro Takakura; Tetsuya Hondo; Guozheng Chao; Michael T. Rose; Shyuichi Ohwada; Kouichi Watanabe; Takahiro Yamaguchi; Hisashi Aso
Serotonin is synthesized by two distinct tryptophan hydroxylases, one in the brain and one in the periphery. The latter is known to be unable to cross the blood-brain barrier. These two serotonin systems have apparently independent functions, although the functions of peripheral serotonin have yet to be fully elucidated. In this study, we have investigated the physiological effect of peripheral serotonin on the concentrations of metabolites in the circulation and in the liver. After fasting, mice were ip injected with 1 mg serotonin. The plasma glucose concentration was significantly elevated between 60 and 270 min after the injection. In contrast, plasma triglyceride, cholesterol, and nonesterified fatty acid concentrations were decreased. The hepatic glycogen synthesis and concentrations were significantly higher at 240 min. At the same time, the hepatic triglyceride content was significantly lower than the basal levels noted before the serotonin injection, whereas the hepatic cholesterol content was significantly higher by 60 min after the injection. Furthermore, serotonin stimulated the contraction of the gallbladder and the excretion of bile. After the serotonin injection, there was a significant induction of apical sodium-dependent bile acid transporter expression, resulting in a decrease in the concentration of bile acids in the feces. Additionally, data are presented to show that the functions of serotonin are mediated through diverse serotonin receptor subtypes. These data indicate that peripheral serotonin accelerates the metabolism of lipid by increasing the concentration of bile acids in circulation.
Current Opinion in Lipidology | 2011
Hitoshi Watanabe; Michael T. Rose; Hisashi Aso
Purpose of review Two independent serotonin systems exist, one in the brain and the other in the periphery. Serotonin is a well known monoaminergic neurotransmitter in the central nervous system and it is known to regulate feeding behavior, meal size, and body weight. On the other hand, there is much less evidence for the role of serotonin as a gastrointestinal hormone, particularly with respect to its effects on glucose and lipid metabolism. This review summarizes our current understanding of the role of peripheral serotonin on glucose and lipid metabolism and the implications of this for further research. Recent findings The enterochromaffin cells of the gastrointestinal tract produce peripheral serotonin postprandially. In mice, it induces a decrease in the concentration of circulating lipids as well as hyperglycemia and hyperinsulinemia through its action on several serotonin receptors. Further, serotonin metabolites act as endogenous agonists for peroxisome proliferator-activated receptor γ and serotonin accelerates adipocyte differentiation via serotonin receptor 2A and 2C. Studies of serotonin are likely to provide new insights into the field of lipid accumulation and metabolism. Summary Recent studies show new physiological functions of peripheral serotonin, linked to glucose and lipid metabolism. Peripheral serotonin may serve as an attractive new therapeutic target for the treatment of metabolic disorders in the near future.
Histochemistry and Cell Biology | 2010
Kohtaro Miyazawa; Tetsuya Hondo; Takashi Kanaya; Sachi Tanaka; Ikuro Takakura; Wataru Itani; Michael T. Rose; Haruki Kitazawa; Takahiro Yamaguchi; Hisashi Aso
Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer’s patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.
American Journal of Pathology | 2011
Ikuro Takakura; Kohtaro Miyazawa; Takashi Kanaya; Wataru Itani; Kouichi Watanabe; Shyuichi Ohwada; Hitoshi Watanabe; Tetsuya Hondo; Michael T. Rose; Tsuyoshi Mori; Suehiro Sakaguchi; Noriyuki Nishida; Shigeru Katamine; Takahiro Yamaguchi; Hisashi Aso
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases. Infection by the oral route is assumed to be important, although its pathogenesis is not understood. Using prion protein (PrP) knockout mice, we investigated the sequence of events during the invasion of orally administered PrPs through the intestinal mucosa and the spread into lymphoid tissues and the peripheral nervous system. Orally administered PrPs were incorporated by intestinal epitheliocytes in the follicle-associated epithelium and villi within 1 hour. PrP-positive cells accumulated in the subfollicle region of Peyers patches a few hours thereafter. PrP-positive cells spread toward the mesenteric lymph nodes and spleen after the accumulation of PrPs in the Peyers patches. The number of PrP molecules in the mesenteric lymph nodes and spleen peaked at 2 days and 6 days after inoculation, respectively. The epitheliocytes in the follicle-associated epithelium incorporating PrPs were annexin V-positive microfold cells and PrP-positive cells in Peyers patches and spleen were CD11b-positive and CD14-positive macrophages. Additionally, PrP-positive cells in Peyers patches and spleen were detected in the vicinity of peripheral nerve fibers in the early stages of infection. These results indicate that orally delivered PrPs were incorporated by microfold cells promptly after challenge and that macrophages might act as a transporter of incorporated PrPs from the Peyers patches to other lymphoid tissues and the peripheral nervous system.
Journal of Dairy Research | 2005
Kazuhito Sakamoto; Tokushi Komatsu; Takuya Kobayashi; Michael T. Rose; Hisashi Aso; Akihiko Hagino; Yoshiaki Obara
To study the effect of growth hormone (GH) on the functions of mammary epithelia, we examined the effect of GH on the synthesis and secretion of alpha-casein in a bovine mammary epithelial cell (BMEC) clonal line, which was established from a 26-d-pregnant Holstein heifer. GH receptors (GHR) were observed in the BMEC on the membrane as well as in the cytoplasm. After BMEC were plated onto cell culture inserts, GH stimulated alpha-casein release in both the presence and absence of the lactogenic hormone complex, which included dexamethasone, insulin and prolactin (DIP). DIP enhanced the effect of GH on alpha-casein release. Although alpha(s1-) casein mRNA expression was not detected in untreated control cells, its expression was observed in BMEC in response to the GH, DIP and GH + DIP treatments. Expression was greater for GH and GH + DIP than for just DIP. Expression of GHR mRNA was increased by DIP treatment, while the mRNA expression was little changed by GH treatment. We conclude that GH acts on BMEC and induces the expression of both the alpha-casein gene and protein. GHR gene expression was shown to be regulated by DIP and GHR. GHR may be involved in a synergic effect between GH and DIP on casein secretion. These results suggest that GH, in addition to its widely accepted homeorhetic role in vivo, also can act on the mammary parenchyma, and that the effects of GH on mammary epithelial cells could partly account for the clear galactopoietic effect of recombinant bovine GH seen in lactating dairy cows.
Journal of Virology | 2010
Kohtaro Miyazawa; Takashi Kanaya; Ikuro Takakura; Sachi Tanaka; Tetsuya Hondo; Hitoshi Watanabe; Michael T. Rose; Haruki Kitazawa; Takahiro Yamaguchi; Shigeru Katamine; Noriyuki Nishida; Hisashi Aso
ABSTRACT Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.
Cell Biology International | 2004
Takato Takenouchi; Norikazu Miyashita; Kyohei Ozutsumi; Michael T. Rose; Hisashi Aso
We investigated the involvement of caveolin‐1 and the cytoskeletal proteins, actin and vimentin, in the adipogenesis of bovine intramuscular preadipocyte (BIP) cells. Immunoblot analysis demonstrated that levels of caveolin‐1 and actin gradually increased during adipose conversion in BIP cells, whereas a slight decrease was observed for vimentin. We found that part of the vimentin was clearly distributed to caveolin‐1‐enriched membrane fractions in BIP cells, but actin was not. During adipogenesis of BIP cells, treatment with the tubulin depolymerizer, nocodazole, significantly increased intracellular triglyceride accumulation compared to non‐treated cells. Immunocytochemical analysis showed that actin microfilaments were significantly disrupted in nocodazole‐treated cells. Also, a decrease in the localization of vimentin in caveolin‐1‐enriched fractions and a failure of vimentin to co‐immunoisolate with caveolin‐1 were observed in nocodazole‐treated cells. These results suggest that a rearrangement of cytoskeletal proteins has a role in the intracellular accumulation of lipid droplets during adipogenesis of BIP cells.
Journal of Dairy Research | 1997
Michael T. Rose; Yoshiaki Obara; Fumiaki Itoh; Haruo Hashimoto; Yuji Takahashi
Four mid-lactation Holstein dairy cows (mean milk yield on day of experiments 26.1 kg/d) were used in a series of experiments to establish the contribution of non-insulin-mediated glucose uptake to total glucose uptake at basal insulin concentrations. A secondary objective was to determine whether somatostatin affects the action of infused insulin. In part I of the experiment a primed continuous infusion [6,6-2H]glucose (45.2 micrograms/kg per min) was begun at time 0 and continued for 5 h. After 3 h of [6,6-2H]glucose infusion (basal period) a primed continuous infusion of insulin (0.001 i.u./kg per min) was administered for 2 h. Coincidental with the insulin infusion, normal glucose was also infused in order to maintain the plasma glucose concentration at euglycaemia. Part II of the experiment was the same as part I except that somatostatin was infused for 2 h (0.333 micrograms/kg per min) instead of insulin. In part III of the experiment both insulin and somatostatin were infused for the final 2 h. Plasma insulin levels were increased by insulin infusion (to 0.1476 to 0.1290 i.u./l for parts I and III respectively) and were reduced by somatostatin infusion in part II (to 0.006 i.u./l) relative to the basal periods (mean 0.021 i.u./l). Glucose uptake during somatostatin infusion (2.50 mg/kg per min; part II) was 92.0% of that observed in the respective basal period (2.72 mg/kg per min). Circulating insulin levels were much lower than the dose of insulin that causes a half maximal effect on glucose uptake (0.06-0.10 i.u./l for ruminants); consequently insulin-mediated glucose uptake was probably absent in part II. Secondly, glucose uptake following insulin only infusion (4.05 mg/kg per min) was significantly lower than that observed when insulin plus somatostatin was infused (4.69 mg/kg per min), indicating that somatostatin either directly or indirectly enhanced the action of insulin on glucose uptake.