Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Torzewski is active.

Publication


Featured researches published by Michael Torzewski.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

C-Reactive Protein in the Arterial Intima Role of C-Reactive Protein Receptor–Dependent Monocyte Recruitment in Atherogenesis

Michael Torzewski; Carsten Rist; Richard F. Mortensen; Thomas P. Zwaka; Magda Bienek; Johannes Waltenberger; Wolfgang Koenig; Gerd Schmitz; Vinzenz Hombach; Jan Torzewski

Infiltration of monocytes into the arterial wall is an early cellular event in atherogenesis. Recent evidence shows that C-reactive protein (CRP) is deposited in the arterial intima at sites of atherogenesis. In this study, we demonstrate that CRP deposition precedes the appearance of monocytes in early atherosclerotic lesions. CRP is chemotactic for freshly isolated human blood monocytes. A specific CRP receptor is demonstrated on monocytes in vitro as well as in vivo, and blockage of the receptor by use of a monoclonal anti-receptor antibody completely abolishes CRP-induced chemotaxis. CRP may play a major role in the recruitment of monocytes during atherogenesis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

C-Reactive Protein Frequently Colocalizes With the Terminal Complement Complex in the Intima of Early Atherosclerotic Lesions of Human Coronary Arteries

Jan Torzewski; Michael Torzewski; David E. Bowyer; Margit Fröhlich; Wolfgang Koenig; Johannes Waltenberger; Colin M. Fitzsimmons; Vinzenz Hombach

There is increasing evidence that complement activation may play a role in atherogenesis. Complement proteins have been demonstrated to be present in early atherosclerotic lesions of animals and humans, and cholesterol-induced atherosclerotic lesion formation is reduced in complement-deficient animals. Potential complement activators in atherosclerotic lesions are now a subject matter of debate. C-reactive protein (CRP) is an acute-phase protein that is involved in inflammatory processes in numerous ways. It binds to lipoproteins and activates the complement system via the classic pathway. In this study we have investigated early atherosclerotic lesions of human coronary arteries by means of immunohistochemical staining. We demonstrate here that CRP deposits in the arterial wall in early atherosclerotic lesions with 2 predominant manifestations. First, there is a diffuse rather than a focal deposition in the deep fibroelastic layer and in the fibromuscular layer of the intima adjacent to the media. In this location, CRP frequently colocalizes with the terminal complement complex. Second, the majority of foam cells below the endothelium show positive staining for CRP. In this location, no colocalization with the terminal complement proteins can be observed. Our data suggest that CRP may promote atherosclerotic lesion formation by activating the complement system and being involved in foam cell formation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids

Mi-Kyung Chang; Christoph J. Binder; Michael Torzewski; Joseph L. Witztum

C-reactive protein (CRP) is an acute-phase protein that binds specifically to phosphorylcholine (PC) as a component of microbial capsular polysaccharide and participates in the innate immune response against microorganisms. CRP elevation also is a major risk factor for cardiovascular disease. We previously demonstrated that EO6, an antioxidized LDL autoantibody, was a T15 clono-specific anti-PC antibody and specifically binds to PC on oxidized phosphatidylcholine (PtC) but not on native PtC. Similarly, EO6 binds apoptotic cells but not viable cells. In addition, such oxidized phospholipids are recognized by macrophage scavenger receptors, implying that these innate immune responses participate in the clearance because of their proinflammatory properties. We now report that CRP binds to oxidized LDL (OxLDL) and oxidized PtC (OxPtC), but does not bind to native, nonoxidized LDL nor to nonoxidized PtC, and its binding is mediated through the recognition of a PC moiety. Reciprocally, CRP binds to PC, which can be competed for by OxLDL and OxPtC but not by native LDL, nonoxidized PtC, or by oxidized phospholipids without the PC headgroup. CRP also binds to apoptotic cells, and this binding is competed for by OxLDL, OxPtC, and PC. These data suggest that CRP binds OxLDL and apoptotic cells by recognition of a PC moiety that becomes accessible as a result of oxidation of PtC molecule. We propose that, analogous to EO6 and scavenger receptors, CRP is a part of the innate immune response to oxidized PC-bearing phospholipids within OxLDL and on the plasma membranes of apoptotic cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1999

Complement and Atherogenesis Binding of CRP to Degraded, Nonoxidized LDL Enhances Complement Activation

Sucharit Bhakdi; Michael Torzewski; Mariam Klouche; Monika Hemmes

Complement activation occurs in temporal correlation with the subendothelial deposition of LDL during early atherogenesis, and complement also plays a pathogenetic role in promoting lesion progression. Two lesion components have been identified that may be responsible for complement activation. First, enzymatic degradation of LDL generates a derivative that can spontaneously activate complement, and enzymatically degraded LDL (E-LDL) has been detected in the lesions. Second, C-reactive protein (CRP) colocalizes with complement C5b-9, as evidenced by immunohistological studies of early atherosclerotic lesions, so the possibility exists that this acute phase protein also fulfills a complement-activating function. Here, we report that addition of LDL and CRP to human serum did not result in significant C3 turnover. Addition of E-LDL provoked complement activation, which was markedly enhanced by CRP. Binding of CRP to E-LDL was demonstrated by sucrose flotation experiments. Binding was Ca(2+)-dependent and inhibitable by phosphorylcholine, and the complement-activating property of E-LDL was destroyed by treatment with phospholipase C. These results indicated that CRP binds to phosphorylcholine groups that become exposed in enzymatically degraded LDL particles. Immunohistological studies complemented these findings in showing that CRP colocalizes with E-LDL in early human atherosclerotic lesions. Thus enzymatic, nonoxidative modification of tissue-deposited LDL can be expected to confer CRP-binding capacity onto the molecule. The ensuing enhancement of complement activation may be relevant to the development and progression of the atherosclerotic lesion.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

Immunohistochemical Demonstration of Enzymatically Modified Human LDL and Its Colocalization With the Terminal Complement Complex in the Early Atherosclerotic Lesion

Michael Torzewski; Mariam Klouche; Johann Hock; Martina Meßner; Bernhard Dorweiler; Jan Torzewski; Helmut E. Gabbert; Sucharit Bhakdi

Treatment of low density lipoprotein (LDL) with degrading enzymes transforms the molecule to a moiety that is micromorphologically indistinguishable from lipoproteinaceous particles that are present in atherosclerotic plaques, and enzymatically modified LDL (E-LDL), but not oxidized LDL (ox-LDL), spontaneously activates the alternative complement pathway, as do lesion lipoprotein derivatives. Furthermore, because E-LDL is a potent inducer of macrophage foam cell formation, we propose that enzymatic degradation may be the key process that renders LDL atherogenic. In this article, we report the production of two murine monoclonal antibodies recognizing cryptic epitopes in human apolipoprotein B that become exposed after enzymatic attack on LDL. One antibody reacted with LDL after single treatment with trypsin, whereas recognition by the second antibody required combined treatment of LDL with trypsin and cholesterol esterase. In ELISAs, both antibodies reacted with E-LDL produced in vitro and with lesion complement activator derived from human atherosclerotic plaques, but they were unreactive with native LDL or ox-LDL. The antibodies stained E-LDL, but not native LDL or ox-LDL, that had been artificially injected into arterial vessel walls. With the use of these antibodies, we have demonstrated that early human atherosclerotic coronary lesions obtained at autopsy as well as lesions examined in freshly explanted hearts always contain extensive extracellular deposits of E-LDL. Terminal complement complexes, detected with a monoclonal antibody specific for a C5b-9 neoepitope, colocalized with E-LDL within the intima, which is compatible with the proposal that subendothelially deposited LDL is enzymatically transformed to a complement activator at the earliest stages in lesion development.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Deficiency of Glutathione Peroxidase-1 Accelerates the Progression of Atherosclerosis in Apolipoprotein E-Deficient Mice

Michael Torzewski; Viola Ochsenhirt; Andrei L. Kleschyov; Matthias Oelze; Andreas Daiber; Huige Li; Heidi Rossmann; Sotirios Tsimikas; Kurt Reifenberg; Fei Cheng; Hans-Anton Lehr; Stefan Blankenberg; Ulrich Förstermann; Thomas Münzel; Karl J. Lackner

Background—We have recently demonstrated that activity of red blood cell glutathione peroxidase-1 is inversely associated with the risk of cardiovascular events in patients with coronary artery disease. The present study analyzed the effect of glutathione peroxidase-1 deficiency on atherogenesis in the apolipoprotein E-deficient mouse. Methods and Results—Female apolipoprotein E-deficient mice with and without glutathione peroxidase-1 deficiency were placed on a Western-type diet for another 6, 12, or 24 weeks. After 24 weeks on Western-type diet, double-knockout mice (GPx-1−/−ApoE−/−) developed significantly more atherosclerosis than control apolipoprotein E-deficient mice. Moreover, glutathione peroxidase-1 deficiency led to modified atherosclerotic lesions with increased cellularity. Functional experiments revealed that glutathione peroxidase-1 deficiency leads to increased reactive oxygen species concentration in the aortic wall as well as increased overall oxidative stress. Peritoneal macrophages from double-knockout mice showed increased in vitro proliferation in response to macrophage-colony-stimulating factor. Also, we found lower levels of bioactive nitric oxide as well as increased tyrosine nitration as a marker of peroxynitrite production. Conclusions—Deficiency of an antioxidative enzyme accelerates and modifies atherosclerotic lesion progression in apolipoprotein E-deficient mice.


Circulation | 2004

Possible Protective Role for C-Reactive Protein in Atherogenesis Complement Activation by Modified Lipoproteins Halts Before Detrimental Terminal Sequence

Sucharit Bhakdi; Michael Torzewski; Kerstin Paprotka; Steffen Schmitt; Hala Barsoom; Prapat Suriyaphol; Shan-Rui Han; Karl J. Lackner; Matthias Husmann

Background—Previous work indicated that enzymatically remodeled LDL (E-LDL) might activate complement in atherosclerotic lesions via a C-reactive protein (CRP)–dependent and CRP-independent pathway. We sought to substantiate this contention and determine whether both pathways drive the sequence to completion. Methods and Results—E-LDL was prepared by sequential treatment of LDL with a protease and cholesteryl esterase. Trypsin, proteinase K, cathepsin H, or plasmin was used with similar results. Functional tests were used to assess total complement hemolytic activity, and immunoassays were used to demonstrate C3 cleavage and to quantify C3a, C4a, C5a, and C5b-9. E-LDL preparations activated complement to completion, independent of CRP, when present above a threshold concentration (100 to 200 μg/mL in 5% serum). Below the threshold, all E-LDL preparations activated complement in dependence of CRP, but the pathway then halted before the terminal sequence. Native LDL and oxidized LDL did not activate complement under any circumstances tested. Immunohistological analyses corroborated the concept that CRP-dependent complement activation inefficiently generates C5b-9. Conclusions—Binding of CRP to E-LDL is the first trigger for complement activation in the atherosclerotic lesion, but the terminal sequence is thereby spared. This putatively protective function of CRP is overrun at higher E-LDL concentrations, so that potentially harmful C5b-9 complexes are generated.


Journal of Pharmacology and Experimental Therapeutics | 2010

Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice.

Ning Xia; Andreas Daiber; Alice Habermeier; Ellen I. Closs; Thomas Thum; Gerrit Spanier; Qing Lu; Matthias Oelze; Michael Torzewski; Karl J. Lackner; Thomas Münzel; Ulrich Förstermann; Huige Li

A crucial cause of the decreased bioactivity of nitric oxide (NO) in cardiovascular diseases is the uncoupling of the endothelial NO synthase (eNOS) caused by the oxidative stress-mediated deficiency of the NOS cofactor tetrahydrobiopterin (BH4). The reversal of eNOS uncoupling might represent a novel therapeutic approach. The treatment of apolipoprotein E knockout (ApoE-KO) mice with resveratrol resulted in the up-regulation of superoxide dismutase (SOD) isoforms (SOD1–SOD3), glutathione peroxidase 1 (GPx1), and catalase and the down-regulation of NADPH oxidases NOX2 and NOX4 in the hearts of ApoE-KO mice. This was associated with reductions in superoxide, 3-nitrotyrosine, and malondialdehyde levels. In parallel, the cardiac expression of GTP cyclohydrolase 1 (GCH1), the rate-limiting enzyme in BH4 biosynthesis, was enhanced by resveratrol. This enhancement was accompanied by an elevation in BH4 levels. Superoxide production from ApoE-KO mice hearts was reduced by the NOS inhibitor l-NG-nitro-arginine methyl ester, indicating eNOS uncoupling in this pathological model. Resveratrol treatment resulted in a reversal of eNOS uncoupling. Treatment of human endothelial cells with resveratrol led to an up-regulation of SOD1, SOD2, SOD3, GPx1, catalase, and GCH1. Some of these effects were preventable with sirtinol, an inhibitor of the protein deacetylase sirtuin 1. In summary, resveratrol decreased superoxide production and enhanced the inactivation of reactive oxygen species. The resulting reduction in BH4 oxidation, together with the enhanced biosynthesis of BH4 by GCH1, probably was responsible for the reversal of eNOS uncoupling. This novel mechanism (reversal of eNOS uncoupling) might contribute to the protective effects of resveratrol.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Role of C-Reactive Protein in Atherogenesis. Can the Apolipoprotein E Knockout Mouse Provide the Answer?

Kurt Reifenberg; Hans-Anton Lehr; Daniela Baskal; Elena Wiese; Stephan C. Schaefer; Steven Black; David Samols; Michael Torzewski; Karl J. Lackner; Matthias Husmann; Maria Blettner; Sucharit Bhakdi

Objective—Human C-reactive protein (CRP) was reported to accelerate atherosclerotic lesion development in male but not in female apolipoprotein E (apoE) knockout mice. Here, mice expressing rabbit CRP (rbCRP) were crossbred onto apoE knockout animals, and the effect on atherogenesis was studied. Methods and Results—Hemolytic complement activity could not be detected in apoE knockout mice. Furthermore, in contrast to human complement, neither rabbit nor human CRP complexed to modified low-density lipoprotein–activated murine complement. At 52 weeks, rbCRP levels were similar in male and female transgenic animals. Serum cholesterol levels were equivalent in female animals irrespective of rbCRP expression, whereas rbCRP–positive males had significantly higher serum cholesterol levels than the rbCRP-negative counterparts. All mice exhibited extensive atherosclerotic lesions, as studied en face, and no differences were noted between rbCRP-negative and rbCRP-positive animals. Atherosclerotic luminal obstruction of aortic arch and first-order neck branches did not differ significantly between rbCRP-positive and rbCRP-negative mice. There was no correlation between rbCRP levels and atherosclerotic lesion formation. Conclusions—No marked effect of rbCRP on the formation of moderately advanced atherosclerotic lesions could be discerned in the apoE knockout mouse. Because of the oddities of the mouse complement system, however, this may not be a good model to investigate the role of CRP in human atherosclerosis.


Radiotherapy and Oncology | 2009

Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

Christian Ostrau; Johannes Hülsenbeck; Melanie Herzog; Arno Schad; Michael Torzewski; Karl J. Lackner; Gerhard Fritz

BACKGROUND AND PURPOSE HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. MATERIALS AND METHODS Four hours to 24h after total body irradiation (6Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5Gy and analyses were performed 3weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. RESULTS Lovastatin attenuated IR-induced activation of NF-kappaB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFalpha, IL-6, TGFbeta, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. gammaH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. CONCLUSIONS Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

Collaboration


Dive into the Michael Torzewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge