Michaela D. J. Blyton
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michaela D. J. Blyton.
Proceedings of the Royal Society of London Series B: Biological Sciences | 2011
Sam C. Banks; David B. Lindenmayer; Lachlan McBurney; David Blair; Emma Knight; Michaela D. J. Blyton
Animal social behaviour is not static with regard to environmental change. Flexibility in cooperative resource use may be an important response to resource decline, mediating the impacts of resource availability on fitness and demography. In forest ecosystems, hollow trees are key den resources for many species, but are declining worldwide owing to forestry. Altered patterns of den sharing may mediate the effects of the decline of this resource. We studied den-sharing interactions among hollow-dependent Australian mountain brushtail possums to investigate how spatial variation in hollow tree availability affects resource sharing and kin selection. Under reduced den availability, individuals used fewer dens and shared them less often. This suggests increased territoriality in the presence of resource competition. Further, there was a switch from kin avoidance to kin preference with decreasing hollow tree availability. This was driven primarily by a change in den sharing among siblings. The inclusive fitness benefits of den sharing with kin are likely to increase under resource-limiting conditions, but are potentially outweighed by the benefits of associating with non-relatives (avoidance of inbreeding or pathogen transmission) where dens are abundant. We discuss how predictions from social evolutionary theory can contribute to understanding animal responses to landscape change.
Ecology Letters | 2014
Michaela D. J. Blyton; Sam C. Banks; Rod Peakall; David B. Lindenmayer; David M. Gordon
The specific processes that facilitate pathogen transmission are poorly understood, particularly for wild animal populations. A major impediment for investigating transmission pathways is the need for simultaneous information on host contacts and pathogen transfer. In this study, we used commensal Escherichia coli strains as a model system for gastrointestinal pathogens. We combined strain-sharing information with detailed host contact data to investigate transmission routes in mountain brushtail possums. Despite E. coli being transmitted via the faecal-oral route, we revealed that, strain-sharing among possums was better explained by host contacts than spatial proximity. Furthermore, and unexpectedly, strain-sharing was more strongly associated with the duration of brief nocturnal associations than day-long den-sharing. Thus, the most cryptic and difficult associations to measure were the most relevant connections for the transmission of this symbiont. We predict that future studies that employ similar approaches will reveal the importance of previously overlooked associations as key transmission pathways.
Molecular Ecology | 2012
Sam C. Banks; Michaela D. J. Blyton; David Blair; Lachlan McBurney; David B. Lindenmayer
Environmental disturbance is predicted to play a key role in the evolution of animal social behaviour. This is because disturbance affects key factors underlying social systems, such as demography, resource availability and genetic structure. However, because natural disturbances are unpredictable there is little information on their effects on social behaviour in wild populations. Here, we investigated how a major wildfire affected cooperation (sharing of hollow trees) by a hollow‐dependent marsupial. We based two alternative social predictions on the impacts of fire on population density, genetic structure and resources. We predicted an adaptive social response from previous work showing that kin selection in den‐sharing develops as competition for den resources increases. Thus, kin selection should occur in burnt areas because the fire caused loss of the majority of hollow‐bearing trees, but no detectable mortality. Alternatively, fire may have a disruptive social effect, whereby postfire home range‐shifts ‘neutralize’ fine‐scale genetic structure, thereby removing opportunities for kin selection between neighbours. Both predictions occurred: the disruptive social effect in burnt habitat and the adaptive social response in adjacent unburnt habitat. The latter followed a massive demographic influx to unburnt ‘refuge’ habitat that increased competition for dens, leading to a density‐related kin selection response. Our results show remarkable short‐term plasticity of animal social behaviour and demonstrate how the social effects of disturbance extend into undisturbed habitat owing to landscape‐scale demographic shifts. We predicted long‐term changes in kinship‐based cooperative behaviour resulting from the genetic and resource impacts of forecast changes to fire regimes in these forests.
Environmental Microbiology | 2013
Michaela D. J. Blyton; Sam C. Banks; Rod Peakall; David M. Gordon
Although Escherichia coli is an important model organism for bacterial research, few studies have explored the nature of temporal variation in E. coli strains within the intestinal tracts of host individuals. In this study the E. coli strains of 54 mountain brushtail possums were sampled on four occasions during a year. This allowed temporal changes to be quantified both at the host population level and within individuals. Escherichia coli strains were identified using a combination of rep-PCR profiles from two primers (CGG and ERIC) and phylogenetic group assigned by quadruplex PCR. The study revealed considerable changes in community structure within individuals among all time periods. In fact, temporal variation within individuals accounted for more of the variation in E. coli community structure than differences between animals. In contrast to the within-host dynamics, there were no significant differences among the time periods at the host population level. It was also found that there was no effect of host age or sex on strain community structure within host individuals. These findings highlight the importance of temporal variation in the ecology of E. coli, while the methods applied in this study may serve as a foundation for further work in this area.
Molecular Ecology | 2015
Sam C. Banks; Thibault Lorin; Robyn E. Shaw; Lachlan McBurney; David Blair; Michaela D. J. Blyton; Annabel L. Smith; Jennifer C. Pierson; David B. Lindenmayer
Ecological disturbance and climate are key drivers of temporal dynamics in the demography and genetic diversity of natural populations. Microscale refuges are known to buffer species’ persistence against environmental change, but the effects of such refuges on demographic and genetic patterns in response to short‐term environmental variation are poorly understood. We quantified demographic and genetic responses of mountain brushtail possums (Trichosurus cunninghami) to rainfall variability (1992–2013) and to a major wildfire. We hypothesized that there would be underlying differences in demographic and genetic processes between an unburnt mesic refuge and a topographically exposed zone that was burnt in 2009. Fire caused a 2‐year decrease in survival in the burnt zone, but the population grew after the fire due to immigration, leading to increased expected heterozygosity. We documented a fire‐related behavioural shift, where the rate of movement by individuals in the unburnt refuge to the burnt zone decreased after fire. Irrespective of the fire, there were long‐term differences in demographic and genetic parameters between the mesic/unburnt refuge and the nonmesic/burnt zone. Survival was high and unaffected by rainfall in the refuge, but lower and rainfall‐dependent in the nonmesic zone. Net movement of individuals was directional, from the mesic refuge to the nonmesic zone, suggesting fine‐scale source–sink dynamics. There were higher expected heterozygosity (HE) and temporal genetic stability in the refuge, but lower HE and marked temporal genetic structure in the exposed habitat, consistent with reduced generational overlap caused by elevated mortality and immigration. Thus, fine‐scale refuges can mediate the short‐term demographic and genetic effects of climate and ecological disturbance.
Applied and Environmental Microbiology | 2015
Michaela D. J. Blyton; Hongfei Pi; Belinda Vangchhia; Sam Abraham; Darren J. Trott; James R. Johnson; David M. Gordon
ABSTRACT The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed.
Molecular Ecology | 2015
Michaela D. J. Blyton; Sam C. Banks; Rod Peakall
Natal sex‐biased dispersal has long been thought to reduce the risk of inbreeding by spatially separating opposite‐sexed kin. Yet, comprehensive and quantitative evaluations of this hypothesis are lacking. In this study, we quantified the effectiveness of sex‐biased dispersal as an inbreeding avoidance strategy by combining spatially explicit simulations and empirical data. We quantified the extent of kin clustering by measuring the degree of spatial autocorrelation among opposite‐sexed individuals (FM structure). This allowed us to systematically explore how the extent of sex‐biased dispersal, generational overlap, and mate searching distance, influenced both kin clustering, and the resulting inbreeding in the absence of complementary inbreeding avoidance strategies. Simulations revealed that when sex‐biased dispersal was limited, positive FM genetic structure developed quickly and increased as the mate searching distance decreased or as generational overlap increased. Interestingly, complete long‐range sex‐biased dispersal did not prevent the development of FM genetic structure when generations overlapped. We found a very strong correlation between FM genetic structure and both FIS under random mating, and pedigree‐based measures of inbreeding. Thus, we show that the detection of FM genetic structure can be a strong indicator of inbreeding risk. Empirical data for two species with different life history strategies yielded patterns congruent with our simulations. Our study illustrates a new application of spatial genetic autocorrelation analysis that offers a framework for quantifying the risk of inbreeding that is easily extendable to other species. Furthermore, our findings provide other researchers with a context for interpreting observed patterns of opposite‐sexed spatial genetic structure.
Environmental Microbiology Reports | 2014
Michaela D. J. Blyton; Samantha J. Cornall; Karina Kennedy; Peter Colligon; David M. Gordon
Escherichia coli can be divided into several distinct phylogenetic groups that differ in their capacity to cause disease. However, what drives the relative abundance of these different phylogenetic groups in the commensal intestinal community of humans is poorly understood. This study investigated how host age and sex influences E. coli community structure in humans. Faecal samples were collected from 205 outpatients in Australia. Different strains within each sample were identified using rep-PCR profiles and their phylogenetic group membership was determined by quadruplex PCR. Female individuals carrying a dominant B2 strain were found to possess fewer strains than those carrying dominant A or B1 strains. Additionally, strains from the same phylogenetic group were more likely to co-occur in females. By contrast, strain diversity and phylogenetic group associations did not differ significantly from random in males. Host age was found to have a significant effect on the phylogenetic group of the dominant strain. Together these findings indicate that the distribution of the different phylogenetic groups within the human intestinal tract may be mediated by a complex interaction between the host environment and the competitive interactions between strains.
Molecular Ecology | 2012
Michaela D. J. Blyton; Sam C. Banks; Rod Peakall; David B. Lindenmayer
The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population’s level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18‐year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation.
PLOS ONE | 2013
Sam C. Banks; David B. Lindenmayer; Jeffrey Wood; Lachlan McBurney; David Blair; Michaela D. J. Blyton
Species in many ecosystems are facing declines of key resources. If we are to understand and predict the effects of resource loss on natural populations, we need to understand whether and how the way animals use resources changes under resource decline. We investigated how the abundance of arboreal marsupials varies in response to a critical resource, hollow-bearing trees. Principally, we asked what mechanisms mediate the relationship between resources and abundance? Do animals use a greater or smaller proportion of the remaining resource, and is there a change in cooperative resource use (den sharing), as the availability of hollow trees declines? Analyses of data from 160 sites surveyed from 1997 to 2007 showed that hollow tree availability was positively associated with abundance of the mountain brushtail possum, the agile antechinus and the greater glider. The abundance of Leadbeater’s possum was primarily influenced by forest age. Notably, the relationship between abundance and hollow tree availability was significantly less than 1∶1 for all species. This was due primarily to a significant increase by all species in the proportional use of hollow-bearing trees where the abundance of this resource was low. The resource-sharing response was weaker and inconsistent among species. Two species, the mountain brushtail possum and the agile antechinus, showed significant but contrasting relationships between the number of animals per occupied tree and hollow tree abundance. The discrepancies between the species can be explained partly by differences in several aspects of the species’ biology, including body size, types of hollows used and social behaviour as it relates to hollow use. Our results show that individual and social aspects of resource use are not always static in response to resource availability and support the need to account for dynamic resource use patterns in predictive models of animal distribution and abundance.