Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michela Asperti is active.

Publication


Featured researches published by Michela Asperti.


Frontiers in Pharmacology | 2014

Hepcidin antagonists for potential treatments of disorders with hepcidin excess

Maura Poli; Michela Asperti; Paola Ruzzenenti; Maria Regoni; Paolo Arosio

The discovery of hepcidin clarified the basic mechanism of the control of systemic iron homeostasis. Hepcidin is mainly produced by the liver as a propeptide and processed by furin into the mature active peptide. Hepcidin binds ferroportin, the only cellular iron exporter, causing the internalization and degradation of both. Thus hepcidin blocks iron export from the key cells for dietary iron absorption (enterocytes), recycling of hemoglobin iron (the macrophages) and the release of storage iron from hepatocytes, resulting in the reduction of systemic iron availability. The BMP/HJV/SMAD pathway is the major regulator of hepcidin expression that responds to iron status. Also inflammation stimulates hepcidin via the IL6/STAT3 pathway with a support of an active BMP/HJV/SMAD pathway. In some pathological conditions hepcidin level is inadequately elevated and reduces iron availability in the body, resulting in anemia. These conditions occur in the genetic iron refractory iron deficiency anemia and the common anemia of chronic disease (ACD) or anemia of inflammation. Currently, there is no definite treatment for ACD. Erythropoiesis-stimulating agents and intravenous iron have been proposed in some cases but they are scarcely effective and may have adverse effects. Alternative approaches aimed to a pharmacological control of hepcidin expression have been attempted, targeting different regulatory steps. They include hepcidin sequestering agents (antibodies, anticalins, and aptamers), inhibitors of BMP/SMAD or of IL6/STAT3 pathway or of hepcidin transduction (siRNA/shRNA) or ferroportin stabilizers. In this review we summarized the biochemical interactions of the proteins involved in the BMP/HJV/SMAD pathway and its natural inhibitors, the murine and rat models with high hepcidin levels currently available and finally the progresses in the development of hepcidin antagonists, with particular attention to the role of heparins and heparin sulfate proteoglycans in hepcidin expression and modulation of the BMP6/SMAD pathway.


Blood | 2014

Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo.

Maura Poli; Michela Asperti; Annamaria Naggi; Natascia Campostrini; Domenico Girelli; Michela Corbella; Marina Benzi; Céline Besson-Fournier; Hélène Coppin; Federica Maccarinelli; Dario Finazzi; Paolo Arosio

Hepcidin controls systemic iron availability, and its excess contributes to the anemia of chronic diseases, the most prevalent anemia in hospitalized patients. We previously reported that heparins are efficient hepcidin inhibitors both in vitro and in vivo, but their anticoagulant activity limits therapeutic use. We studied nonanticoagulant heparins produced by N-acetylation and oxidation/reduction (glycol-split) that lost antithrombin-binding affinity. Four nonanticoagulant heparins inhibited hepcidin expression in hepatic HepG2 cells and primary hepatocytes. The 2 most potent ones used in mice suppressed liver hepcidin expression and serum hepcidin in 6 hours, with a significant decrease of spleen iron. This occurred also in lipopolysaccharide (LPS)-treated animals that mimic inflammation, as well as after chronic 1-week treatments, without evident adverse effects on coagulation. Heparin injections increased iron mobilization and facilitated the recovery from the anemia induced by heat-killed Brucella abortus, a model of inflammatory anemia. The heparins were used also in Bmp6(-/-) mice. A single dose of heparin reduced the already low level of hepcidin of these mice and prevented its induction by LPS. These nonanticoagulant compounds impair bone morphogenetic protein /sons of mothers against decapentaplegic signaling with no evident adverse effect in vivo, even when administered chronically. They may offer a strategy for the treatment of diseases with high hepcidin levels.


Biochemical Pharmacology | 2014

Oversulfated heparins with low anticoagulant activity are strong and fast inhibitors of hepcidin expression in vitro and in vivo

Maura Poli; Michela Asperti; Paola Ruzzenenti; Luca Mandelli; Natascia Campostrini; Giuliana Martini; Margherita Di Somma; Federica Maccarinelli; Domenico Girelli; Annamaria Naggi; Paolo Arosio

Hepcidin is a peptide hormone that controls systemic iron availability and is upregulated by iron and inflammation. Heparins have been shown to be efficient hepcidin inhibitors both in vitro and in vivo, even when their anticoagulant activity has been abolished by chemical reactions of oxidation/reduction (glycol-split). We analyzed a modified heparin type, characterized by a high, almost saturated, sulfation degree and low molecular weight. It inhibited hepcidin expression in hepatic HepG2 cells, and when used in mice, it readily suppressed liver hepcidin mRNA and serum hepcidin, with a significant decrease of spleen iron. This occurred also in inflammation-model, LPS-treated animals, and after heparin chronic 10-day treatments. The heparin had low/absent anticoagulant activity, as tested for factor-Xa and -IIA, APTT and anti Xa. It reduced triglyceride levels in the mice. This heparin acts faster and is more potent than the glycol split-heparins, probably because of its smaller molecular weight and higher sulfation degree. This modified heparin has potential applications for the treatment of diseases with high hepcidin levels.


Biochimica et Biophysica Acta | 2015

The Ferritin-Heavy-Polypeptide-Like-17 (FTHL17) gene encodes a ferritin with low stability and no ferroxidase activity and with a partial nuclear localization

Paola Ruzzenenti; Michela Asperti; Stefania Mitola; Elisabetta Crescini; Federica Maccarinelli; Magdalena Gryzik; Maria Regoni; Dario Finazzi; Paolo Arosio; Maura Poli

BACKGROUND Three functional ferritin genes have been identified so far in mammals, and they encode the cytosolic Heavy (FTH) and Light chain (FTL) and the mitochondrial ferritin. The expression of a transcript by a fourth ferritin-like gene (Ferritin-Heavy-Polypeptide-Like-17, FTHL17) on the X chromosome was reported in mouse spermatogonia and in early embryonic cells. METHODS The intronless human FTHL17 gene encodes a protein with 64% identity to human FTH with substitution of key residues of the ferroxidase center. The gene was cloned into vectors for expression in Escherichia coli and mammalian cells, linked to a flag-tag. RESULTS The recombinant FTHL17 from E. coli purified as an assembled 24-mer ferritin devoid of ferroxidase activity and with a reduced physical stability. When transiently expressed in mammalian cells the flag-FTHL17 assembled in ferritin shells that showed reduced stability to denaturants compared with flag H and L ferritins. Immunocytochemistry with anti-flag antibody decorated the nuclei of flag-FTHL17 transfected COS cells, but not those of the cells transfected with flag-FTH or flag-FTL. CONCLUSIONS We concluded that FTHL17 encodes a ferritin-like protein without ferroxidase activity. Its restricted embryonic expression and partial nuclear localization suggest that this novel ferritin type may have functions other than iron storage. GENERAL SIGNIFICANCE The work confirms the presence of a fourth functional human ferritin gene with properties distinct from the canonical cytosolic ones.


Frontiers in Pharmacology | 2016

High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin

Michela Asperti; Annamaria Naggi; Emiliano Esposito; Paola Ruzzenenti; Margherita Di Somma; Magdalena Gryzik; Paolo Arosio; Maura Poli

Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4–16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites.


PLOS ONE | 2016

Heparanase Overexpression Reduces Hepcidin Expression, Affects Iron Homeostasis and Alters the Response to Inflammation.

Michela Asperti; Tanja Stuemler; Maura Poli; Magdalena Gryzik; Lena Lifshitz; Esther G. Meyron-Holtz; Israel Vlodavsky; Paolo Arosio

Hepcidin is the key regulator of systemic iron availability that acts by controlling the degradation of the iron exporter ferroportin. It is expressed mainly in the liver and regulated by iron, inflammation, erythropoiesis and hypoxia. The various agents that control its expression act mainly via the BMP6/SMAD signaling pathway. Among them are exogenous heparins, which are strong hepcidin repressors with a mechanism of action not fully understood but that may involve the competition with the structurally similar endogenous Heparan Sulfates (HS). To verify this hypothesis, we analyzed how the overexpression of heparanase, the HS degrading enzyme, modified hepcidin expression and iron homeostasis in hepatic cell lines and in transgenic mice. The results showed that transient and stable overexpression of heparanase in HepG2 cells caused a reduction of hepcidin expression and of SMAD5 phosphorylation. Interestingly, the clones showed also altered level of TfR1 and ferritin, indices of a modified iron homeostasis. The heparanase transgenic mice showed a low level of liver hepcidin, an increase of serum and liver iron with a decrease in spleen iron content. The hepcidin expression remained surprisingly low even after treatment with the inflammatory LPS. The finding that modification of HS structure mediated by heparanase overexpression affects hepcidin expression and iron homeostasis supports the hypothesis that HS participate in the mechanisms controlling hepcidin expression.


Chemistry: A European Journal | 2015

Chemically and Biologically Harmless versus Harmful Ferritin/Copper–Metallothionein Couples

Fernando Carmona; Daniela Mendoza; Scheghajegh Kord; Michela Asperti; Paolo Arosio; Sílvia Atrian; Mercè Capdevila; José M. Domínguez-Vera

The simultaneous measurement of the decrease of available Fe(II) ions and the increase of available Fe(III) ions allowed the analysis of the ferroxidase activity of two distinct apoferritins. Although recombinant human apoferritin (HuFtH) rapidly oxidizes Fe(II) to Fe(III) , this iron is not properly stored in the ferritin cavity, as otherwise occurs in horse-spleen H/L-apoferritin (HsFt; H=heavy subunit, L=light subunit). Iron storage in these apoferritins was also studied in the presence of two copper-loaded mammalian metallothioneins (MT2 and MT3), a scenario that occurs in different brain-cell types. For HuFtH, unstored Fe(III) ions trigger the oxidation of Cu-MT2 with concomitant Cu(I) release. In contrast, there is no reaction with Cu-MT2 in the case of HsFt. Similarly, Cu-MT3 does not react during either HuFtH or HsFt iron reconstitution. Significantly, the combination of ferritin and metallothionein isoforms reported in glia and neuronal cells are precisely those combinations that avoid a harmful release of Fe(II) and Cu(I) ions.


Molecules | 2017

Non-Anticoagulant Heparins Are Hepcidin Antagonists for the Treatment of Anemia

Maura Poli; Michela Asperti; Paola Ruzzenenti; Annamaria Naggi; Paolo Arosio

The peptide hormone hepcidin is a key controller of systemic iron homeostasis, and its expression in the liver is mainly regulated by bone morphogenetic proteins (BMPs), which are heparin binding proteins. In fact, heparins are strong suppressors of hepcidin expression in hepatic cell lines that act by inhibiting the phosphorylation of SMAD1/5/8 proteins elicited by the BMPs. The inhibitory effect of heparins has been demonstrated in cells and in mice, where subcutaneous injections of non-anticoagulant heparins inhibited liver hepcidin expression and increased iron bioavailability. The chemical characteristics for high anti-hepcidin activity in vitro and in vivo include the 2O-and 6O-sulfation and a molecular weight above 7 kDa. The most potent heparins have been found to be the super-sulfated ones, active in hepcidin suppression with a molecular weight as low as 4 kDa. Moreover, the alteration of endogenous heparan sulfates has been found to cause a reduction in hepcidin expression in vitro and in vivo, indicating that heparins act by interfering with the interaction between BMPs and components of the complex involved in the activation of the BMP/SMAD1/5/8 pathway. This review summarizes recent findings on the anti-hepcidin activity of heparins and their possible use for the treatment of anemia caused by hepcidin excess, including the anemia of chronic diseases.


Nutrients | 2018

Sucrosomial® Iron Supplementation in Mice: Effects on Blood Parameters, Hepcidin, and Inflammation

Michela Asperti; Magdalena Gryzik; Elisa Brilli; Annalisa Castagna; Michela Corbella; Rossella Gottardo; Domenico Girelli; Germano Tarantino; Paolo Arosio; Maura Poli

Sucrosomial® Iron is a recently developed formulation to treat iron deficiency based on ferric pyrophosphate covered by a matrix of phospholipids plus sucrose esters of fatty acids. Previous data indicated that Sucrosomial® Iron is efficiently absorbed by iron-deficient subjects, even at low dosage, and without side effects. Its structural properties may suggest that it is absorbed by an intestinal pathway which is different to the one used by ionic iron. Although, studies in vitro showed that Sucrosomial® Iron is readily absorbed, no animal models have been established to study this important aspect. To this aim, we induced iron deficient anemia in mice by feeding them with a low-iron diet, and then we treated them with either Sucrosomial® Iron or sulfate iron by gavage for up to two weeks. Both iron formulations corrected anemia and restored iron stores in a two-week period, but with different kinetics. Ferrous Sulfate was more efficient during the first week and Sucrosomial® Iron in the second week. Of note, when given at the same concentrations, Ferrous Sulfate induced the expression of hepcidin and four different inflammatory markers (Socs3, Saa1, IL6 and CRP), while Sucrosomial® Iron did not. We conclude that anemic mice are interesting models to study the absorption of oral iron, and that Sucrosomial® Iron is to be preferred over Ferrous Sulfate because of similar absorption but without inducing an inflammatory response.


Protein Engineering Design & Selection | 2017

Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains

Mohamed Boumaiza; Fernando Carmona; Maura Poli; Michela Asperti; Alessandra Gianoncelli; Michela Bertuzzi; Paola Ruzzenenti; Paolo Arosio; Mohamed Nejib Marzouki

Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5’end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli. The recombinant fusion hepcidin–ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin–ferroportin interaction in cells and also as drug-delivery agent.

Collaboration


Dive into the Michela Asperti's collaboration.

Top Co-Authors

Avatar

Maura Poli

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge