Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Arturo Caponero is active.

Publication


Featured researches published by Michele Arturo Caponero.


IEEE Transactions on Biomedical Engineering | 2012

Theoretical Analysis and Experimental Evaluation of Laser-Induced Interstitial Thermotherapy in Ex Vivo Porcine Pancreas

Paola Saccomandi; Emiliano Schena; Michele Arturo Caponero; F. M. Di Matteo; M. Martino; M. Pandolfi; Sergio Silvestri

Laser-induced interstitial thermotherapy (LITT) has been recently applied to pancreas in animal models for ablation purpose. Assessment of thermal effects due to the laser-pancreatic tissue interaction is a critical factor in validating the procedure feasibility and safety. A mathematical model based on bioheat equation and its experimental assessment was developed. The LITT procedure was performed on 40 ex vivo porcine pancreases, with an Nd:YAG (1064 nm) energy of 1000 J and power from 1.5 up to 10 W conveyed by a quartz optical fiber with 300 μm diameter. Six fiber Bragg grating sensors have been utilized to measure temperature distribution as a function of time at fixed distances from the applicator tip within pancreas undergoing LITT. Simulations and experiments show temperature variations ΔT steeply decreasing with distance from the applicator at higher power values: at 6 W, ΔT >; 40°C at 5 mm and ΔT ≅ 5°C at 10 mm. ΔT nonlinearly increases with power close to the applicator. Ablated and coagulated tissue volumes have also been measured and experimental results agree with theoretical ones. Despite the absence of data in the current literature on pancreas optical parameters, the model allowed a quite good prediction of thermal effects. The prediction of LITT effects on pancreas is necessary to assess laser dosimetry.


IEEE Sensors Journal | 2006

Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors

A. Cusano; P. Capoluongo; S. Campopiano; Antonello Cutolo; M. Giordano; F. Felli; Antonio Paolozzi; Michele Arturo Caponero

A critical issue in practical structural health monitoring is related to the capability of proper sensing systems integrated within the host structures to detect, identify, and localize damage generation. To this aim, many techniques have been proposed involving dynamic measurements such as modal analysis, acoustic emission, and ultrasonics. This paper relies on the use of embedded fiber Bragg grating sensors for performing an experimental modal analysis on a wing of an aircraft model. Time domain response of the embedded fiber-optic sensors induced by hammer impacts were acquired and transformed into the frequency domain. Using a classical technique based on the frequency transfer function, the first displacement and strain mode shapes of the wing have been retrieved in terms of natural frequencies and amplitudes. Experimental results confirm the excellent performances of this class of sensing devices to determine the modal behavior within complex structures compared with conventional accelerometer-based detection systems.


Physics in Medicine and Biology | 2013

Experimental assessment of CT-based thermometry during laser ablation of porcine pancreas.

Emiliano Schena; Paola Saccomandi; Francesco Giurazza; Michele Arturo Caponero; Luca Mortato; F. M. Di Matteo; F. Panzera; R. Del Vescovo; B. Beomonte Zobel; Sergio Silvestri

Laser interstitial thermotherapy (LITT) is employed to destroy tumors in organs, and its outcome strongly depends on the temperature distribution inside the treated tissue. The recent introduction of computed tomography (CT) scan thermometry, based on the CT number dependence of the tissue with temperature, overcomes the invasiveness of other techniques used to monitor temperature during LITT. The averaged CT number (ROI = 0.02 cm(2)) of an ex vivo swine pancreas is monitored during LITT (Nd:YAG laser power of 3 W, treatment time: 120 s) at different distances from the applicator (from 4 to 30 mm). The averaged CT number shows a clear decrease during treatment: it is highest at 4 mm from the applicator (mean variation in the whole treatment of -0.256 HU s(-1)) and negligible at 30 mm, since the highest temperature increase is present close to the applicator (i.e., 45 °C at 4 mm and 25 °C at 6 mm). To obtain the relationship between CT numbers and pancreas temperature, the reference temperature was measured by 12 fiber Bragg grating sensors. The CT number decreases as a function of temperature, showing a nonlinear trend with a mean thermal sensitivity of -0.50 HU °C(-1). Results here reported are the first assessment of pancreatic CT number dependence on temperature, at the best of our knowledge. Findings can be useful to further investigate CT scan thermometry during LITT on the pancreas.


Smart Materials and Structures | 2005

Metal coating for enhancing the sensitivity of fibre Bragg grating sensors at cryogenic temperature

C. Lupi; F. Felli; L Ippoliti; Michele Arturo Caponero; M. T. Ciotti; V Nardelli; Antonio Paolozzi

Fibre Bragg grating (FBG) sensors that are immune to electromagnetic interference could advantageously perform cryogenic temperature monitoring in superconducting magnetic fields, but their intrinsic temperature sensitivity is quite poor and must be enhanced. In fact, the low thermal expansion coefficient of silica limits the temperature sensitivity of bare FBG sensors at cryogenic temperature. In this paper the possibility of improving the temperature sensitivity of FBG sensors by metal coating is investigated. Specifically, zinc and copper coating depositions are performed by the traditional electrowinning process, after aluminium pre-coating of the sensor. Coated FBG sensors are inspected by both optical and metallographic techniques. SEM metallographic investigations show that a homogeneous deposit is obtained, with good metal adhesion to the FBG sensor. Optical testing shows that the optical properties of the coated FBG sensors are slightly affected: aluminium pre-coating produces appreciable modification of the diffraction spectrum in both peak width and peak shift, while zinc coating produces a moderate peak shift and copper coating just enlarges the peak width. Results presented in this paper show that both metals appreciably increase the temperature sensitivity of the FBG sensors. Zinc coating provides the highest sensitivity and high-resolution temperature measurements are possible at temperatures as low as 15 K.


Biosensors | 2015

Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials

Marco Ciocchetti; Carlo Massaroni; Paola Saccomandi; Michele Arturo Caponero; Andrea Polimadei; Domenico Formica; Emiliano Schena

Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.


IEEE Sensors Journal | 2008

Improving FBG Sensor Sensitivity at Cryogenic Temperature by Metal Coating

C. Lupi; F. Felli; Andrea Brotzu; Michele Arturo Caponero; Antonio Paolozzi

Commercially available fiber Bragg grating (FBG) sensors cannot be used for measuring cryogenic temperatures because they are made of silica the thermal expansion coefficient of which tends to zero when approaching 4 K. Because of the many advantages of fiber optic sensors with respect to conventional ones, in this paper it is shown how to circumvent such a limitation by applying a proper metal coating. This approach drastically increases temperature measuring capability of FBGs at cryogenic environments typically encountered in application involving liquid gases or in space. Various metals have been deposited by electro winning on the external fiber surface previously treated with an aluminum precoating. Also, a special casting process has been developed. The explored temperature region was 4.2-40 K. The paper reports the characterization of FBG sensors coated with different metals and shows the validity of this new temperature sensor with respect to conventional ones.


Medical Engineering & Physics | 2015

Magnetic resonance-based thermometry during laser ablation on ex-vivo swine pancreas and liver

G. Allegretti; Paola Saccomandi; Francesco Giurazza; Michele Arturo Caponero; Giulia Frauenfelder; F. M. Di Matteo; B. Beomonte Zobel; Sergio Silvestri; Emiliano Schena

Laser Ablation (LA) is a minimally-invasive procedure for tumor treatment. LA outcomes depend on the heat distribution inside tissues and require accurate temperature measurement during the procedure. Magnetic resonance imaging (MRI) allows a non-invasive and three-dimensional thermometry of the organ undergoing LA. In this study, the temperature distribution within two swine pancreases and three swine livers undergoing LA (Nd:YAG, power: 2 W, treatment time: 4 min) was monitored by a 1.5-T MR scanner, utilizing two T1-weighted sequences (IRTF and SRTF). The signal intensity in four regions of interest, placed at different distances from the laser applicator, was related to temperature variations monitored in the same regions by twelve fiber Bragg grating sensors. The relationship between the signal intensity and temperature increase was calculated to obtain the calibration curve and to evaluate accuracy, sensibility and precision of each sequence. This is the first study of MR-based thermometry during LA on pancreas. More specifically, the IRTF sequence provides the highest temperature sensitivity in both liver (1.8 ± 0.2 °C(-1)) and pancreas (1.8 ± 0.5 °C(-1)) and the lowest precision and accuracy. SRTF sequence on pancreas presents the highest accuracy and precision (MODSFRT = -0.1 °C and LOASFRT = [-2.3; 2.1] °C).


IEEE Sensors Journal | 2016

Error of a Temperature Probe for Cancer Ablation Monitoring Caused by Respiratory Movements: Ex Vivo and In Vivo Analysis

Camilla Cavaiola; Paola Saccomandi; Carlo Massaroni; Daniele Tosi; Francesco Giurazza; Giulia Frauenfelder; Bruno Beomonte Zobel; Francesco Maria Di Matteo; Michele Arturo Caponero; Andrea Polimadei; Emiliano Schena

Hyperthermal techniques are spreading as an alternative to conventional surgery for cancer removal. A real-time temperature feedback can be used to adjust the treatment settings, in order to improve the clinical outcomes. In this paper, we experimentally assessed the feasibility for distributed temperature monitoring of a custom probe, which consists of a needle embedding six fiber Bragg gratings (FBGs). Since FBGs are also sensitive to strain, we focused on the analysis of the measurement error (artifact) caused by respiratory movements. We assessed the artifact both on ex vivo pig liver and lung (by mimicking the movement of these organs caused by respiration) and on in vivo trial on pig liver. Lastly, we proposed an algorithm to detect and minimize the artifact during ex vivo liver laser ablation. During both ex vivo and in vivo trials, the probe insertion within the organ was easy and safe. The artifact was significant (up to 3 °C), but the correction algorithm allows minimizing the error. The main advantages of the proposed probe are: 1) spatially resolved temperature monitoring (in six points of the tissue by inserting a single needle) and 2) the needle is magnetic resonance (MR)-compatible, hence can be used during MR-guided procedure. Even if the model is close to humans, further trials are required to investigate the feasibility of the probe for clinical applications.


IEEE Sensors Journal | 2016

Design and Feasibility Assessment of a Magnetic Resonance-Compatible Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring

Carlo Massaroni; Paola Saccomandi; Domenico Formica; Daniela Lo Presti; Michele Arturo Caponero; Giulia Di Tomaso; Francesco Giurazza; Mario Muto; Emiliano Schena

Comfortable and easy to wear systems are gaining popularity for monitoring physiological parameters. Among others, smart textiles based on fiber optic sensors have shown promising results for respiratory monitoring and applications in magnetic resonance (MR) environment. The aim of this paper was to design, fabricate, and assess on healthy volunteers a smart textile based on fiber Bragg grating (FBG) sensors for respiratory monitoring. The new design was driven by the chest wall kinematics analysis performed by a marked-based motion capture system. The proposed textile shows promising performances for the non-intrusive monitoring of both compartmental and global volumetric parameters over time. Moreover, the use of FBGs makes the system MR-compatible. This feature was tested on two volunteers. The system did neither cause any image artifacts nor discomfort to the volunteers. This promising result encourages future developments to investigate the feasibility of the proposed smart textile for long-term observation of respiratory parameters, for patients monitoring during MR scan, and during sport activities in athletes.


Journal of Sensors | 2015

Feedforward Neural Network for Force Coding of an MRI-Compatible Tactile Sensor Array Based on Fiber Bragg Grating

Paola Saccomandi; Calogero Maria Oddo; Loredana Zollo; Domenico Formica; Rocco Antonio Romeo; Carlo Massaroni; Michele Arturo Caponero; Nicola Vitiello; Eugenio Guglielmelli; Sergio Silvestri; Emiliano Schena

This work shows the development and characterization of a fiber optic tactile sensor based on Fiber Bragg Grating (FBG) technology. The sensor is a 3 3 array of FBGs encapsulated in a PDMS compliant polymer. The strain experienced by each FBG is transduced into a Bragg wavelength shift and the inverse characteristics of the sensor were computed by means of a feedforward neural network. A 21 mN RMSE error was achieved in estimating the force over the 8 N experimented load range while including all probing sites in the neural network training procedure, whereas the median force RMSE was 199 mN across the 200 instances of a Monte Carlo randomized selection of experimental sessions to evaluate the calibration under generalized probing conditions. The static metrological properties and the possibility to fabricate sensors with relatively high spatial resolution make the proposed design attractive for the sensorization of robotic hands. Furthermore, the proved MRI-compatibility of the sensor opens other application scenarios, such as the possibility to employ the array for force measurement during functional MRI-measured brain activation.

Collaboration


Dive into the Michele Arturo Caponero's collaboration.

Top Co-Authors

Avatar

Emiliano Schena

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

Paola Saccomandi

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

Carlo Massaroni

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

F. Felli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonio Paolozzi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Sergio Silvestri

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

Francesco Giurazza

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

Domenico Formica

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

G. Saviano

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge